These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 33327164)

  • 21. A machine learning potential for simulating infrared spectra of nanosilicate clusters.
    Tang Z; Bromley ST; Hammer B
    J Chem Phys; 2023 Jun; 158(22):. PubMed ID: 37290080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine-Learning-Based Interatomic Potentials for Group IIB to VIA Semiconductors: Toward a Universal Model.
    Liu J; Zhang X; Chen T; Zhang Y; Zhang D; Zhang L; Chen M
    J Chem Theory Comput; 2024 Jul; 20(13):5717-5731. PubMed ID: 38898771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tests of an approximate scaling principle for dynamics of classical fluids.
    Young T; Andersen HC
    J Phys Chem B; 2005 Feb; 109(7):2985-94. PubMed ID: 16851313
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Cao L; Zeng J; Wang B; Zhu T; Zhang JZH
    Phys Chem Chem Phys; 2022 May; 24(19):11801-11811. PubMed ID: 35506927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of optoelectronic properties of Cu
    Selvaratnam B; Koodali RT; Miró P
    Phys Chem Chem Phys; 2020 Jul; 22(26):14910-14917. PubMed ID: 32584353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A neural network potential for the IRMOF series and its application for thermal and mechanical behaviors.
    Tayfuroglu O; Kocak A; Zorlu Y
    Phys Chem Chem Phys; 2022 May; 24(19):11882-11897. PubMed ID: 35510633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case.
    Staub R; Gantzer P; Harabuchi Y; Maeda S; Varnek A
    Molecules; 2023 May; 28(11):. PubMed ID: 37298952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.
    Batzner S; Musaelian A; Sun L; Geiger M; Mailoa JP; Kornbluth M; Molinari N; Smidt TE; Kozinsky B
    Nat Commun; 2022 May; 13(1):2453. PubMed ID: 35508450
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ab initio based polarizable force field generation and application to liquid silica and magnesia.
    Beck P; Brommer P; Roth J; Trebin HR
    J Chem Phys; 2011 Dec; 135(23):234512. PubMed ID: 22191891
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flexible machine-learning interatomic potential for simulating structural disordering behavior of Li
    Kim K; Dive A; Grieder A; Adelstein N; Kang S; Wan LF; Wood BC
    J Chem Phys; 2022 Jun; 156(22):221101. PubMed ID: 35705400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Committee neural network potentials control generalization errors and enable active learning.
    Schran C; Brezina K; Marsalek O
    J Chem Phys; 2020 Sep; 153(10):104105. PubMed ID: 32933264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling Intermolecular Interactions with Exchange-Hole Dipole Moment Dispersion Corrections to Neural Network Potentials.
    Tu NTP; Williamson S; Johnson ER; Rowley CN
    J Phys Chem B; 2024 Sep; 128(35):8290-8302. PubMed ID: 39166778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How close are the classical two-body potentials to ab initio calculations? Insights from linear machine learning based force matching.
    Yu Z; Annamareddy A; Morgan D; Wang B
    J Chem Phys; 2024 Feb; 160(5):. PubMed ID: 38310473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-Learning Method for Construction of Analytical Interatomic Potentials to Describe Laser-Excited Materials.
    Bauerhenne B; Lipp VP; Zier T; Zijlstra ES; Garcia ME
    Phys Rev Lett; 2020 Feb; 124(8):085501. PubMed ID: 32167343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural Network Approach for a Rapid Prediction of Metal-Supported Borophene Properties.
    Mignon P; Allouche AR; Innis NR; Bousige C
    J Am Chem Soc; 2023 Dec; 145(50):27857-27866. PubMed ID: 38063165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compositional transferability of deep learning potentials: a case study for LiCl-KCl melt.
    Zakiryanov D
    J Mol Model; 2024 Jul; 30(8):283. PubMed ID: 39060545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials.
    Vlasiuk M; Sadus RJ
    J Chem Phys; 2017 Jun; 146(24):244504. PubMed ID: 28668034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neural network representation of electronic structure from ab initio molecular dynamics.
    Gu Q; Zhang L; Feng J
    Sci Bull (Beijing); 2022 Jan; 67(1):29-37. PubMed ID: 36545956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine-Learning-Driven Simulations on Microstructure and Thermophysical Properties of MgCl
    Liang W; Lu G; Yu J
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4034-4042. PubMed ID: 33430593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The thermal decomposition mechanism of RDX/AP composites:
    Pang K; Wen M; Chang X; Xu Y; Chu Q; Chen D
    Phys Chem Chem Phys; 2024 Apr; 26(15):11545-11557. PubMed ID: 38532730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.