These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33327164)

  • 21. Flexible machine-learning interatomic potential for simulating structural disordering behavior of Li
    Kim K; Dive A; Grieder A; Adelstein N; Kang S; Wan LF; Wood BC
    J Chem Phys; 2022 Jun; 156(22):221101. PubMed ID: 35705400
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Committee neural network potentials control generalization errors and enable active learning.
    Schran C; Brezina K; Marsalek O
    J Chem Phys; 2020 Sep; 153(10):104105. PubMed ID: 32933264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-Learning Method for Construction of Analytical Interatomic Potentials to Describe Laser-Excited Materials.
    Bauerhenne B; Lipp VP; Zier T; Zijlstra ES; Garcia ME
    Phys Rev Lett; 2020 Feb; 124(8):085501. PubMed ID: 32167343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials.
    Vlasiuk M; Sadus RJ
    J Chem Phys; 2017 Jun; 146(24):244504. PubMed ID: 28668034
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural network representation of electronic structure from ab initio molecular dynamics.
    Gu Q; Zhang L; Feng J
    Sci Bull (Beijing); 2022 Jan; 67(1):29-37. PubMed ID: 36545956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Machine-Learning-Driven Simulations on Microstructure and Thermophysical Properties of MgCl
    Liang W; Lu G; Yu J
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4034-4042. PubMed ID: 33430593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine learning molecular dynamics for the simulation of infrared spectra.
    Gastegger M; Behler J; Marquetand P
    Chem Sci; 2017 Oct; 8(10):6924-6935. PubMed ID: 29147518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Free energy perturbation study of water dimer dissociation kinetics.
    Ming Y; Lai G; Tong C; Wood RH; Doren DJ
    J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine learning interatomic potentials for aluminium: application to solidification phenomena.
    Jakse N; Sandberg J; Granz LF; Saliou A; Jarry P; Devijver E; Voigtmann T; Horbach J; Meyer A
    J Phys Condens Matter; 2022 Nov; 51(3):. PubMed ID: 36301702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First-principles based deep neural network force field for molecular dynamics simulation of N-Ga-Al semiconductors.
    Huang Z; Wang Q; Liu X; Liu X
    Phys Chem Chem Phys; 2023 Jan; 25(3):2349-2358. PubMed ID: 36598036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New optimization scheme to obtain interaction potentials for oxide glasses.
    Sundararaman S; Huang L; Ispas S; Kob W
    J Chem Phys; 2018 May; 148(19):194504. PubMed ID: 30307185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vibrational mode frequencies of silica species in SiO2-H2O liquids and glasses from ab initio molecular dynamics.
    Spiekermann G; Steele-MacInnis M; Schmidt C; Jahn S
    J Chem Phys; 2012 Apr; 136(15):154501. PubMed ID: 22519330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accelerating atomistic simulations with piecewise machine-learned
    Zhang Y; Hu C; Jiang B
    Phys Chem Chem Phys; 2021 Jan; 23(3):1815-1821. PubMed ID: 33236743
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fully a priori prediction of the vapor-liquid equilibria of Ar, Kr, and Xe from ab initio two-body plus three-body interatomic potentials.
    Deiters UK; Sadus RJ
    J Chem Phys; 2019 Jul; 151(3):034509. PubMed ID: 31325952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation.
    Zhang Y; Hu C; Jiang B
    J Phys Chem Lett; 2019 Sep; 10(17):4962-4967. PubMed ID: 31397157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active sampling for neural network potentials: Accelerated simulations of shear-induced deformation in Cu-Ni multilayers.
    Sprueill HW; Bilbrey JA; Pang Q; Sushko PV
    J Chem Phys; 2023 Mar; 158(11):114103. PubMed ID: 36948793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interatomic potential parameterization using particle swarm optimization: Case study of glassy silica.
    Christensen R; Sørensen SS; Liu H; Li K; Bauchy M; Smedskjaer MM
    J Chem Phys; 2021 Apr; 154(13):134505. PubMed ID: 33832276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimized symmetry functions for machine-learning interatomic potentials of multicomponent systems.
    Rostami S; Amsler M; Ghasemi SA
    J Chem Phys; 2018 Sep; 149(12):124106. PubMed ID: 30278670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Representing potential energy surfaces by high-dimensional neural network potentials.
    Behler J
    J Phys Condens Matter; 2014 May; 26(18):183001. PubMed ID: 24758952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transfer learning for chemically accurate interatomic neural network potentials.
    Zaverkin V; Holzmüller D; Bonfirraro L; Kästner J
    Phys Chem Chem Phys; 2023 Feb; 25(7):5383-5396. PubMed ID: 36748821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.