These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 33327188)
1. Critical dynamics of anisotropic antiferromagnets in an external field. Nandi R; Täuber UC Phys Rev E; 2020 Nov; 102(5-1):052114. PubMed ID: 33327188 [TBL] [Abstract][Full Text] [Related]
2. Nonequilibrium critical dynamics of the relaxational models C and D. Akkineni VK; Täuber UC Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036113. PubMed ID: 15089367 [TBL] [Abstract][Full Text] [Related]
3. Aging exponents for nonequilibrium dynamics following quenches from critical points. Das K; Vadakkayil N; Das SK Phys Rev E; 2020 Jun; 101(6-1):062112. PubMed ID: 32688577 [TBL] [Abstract][Full Text] [Related]
4. Universal aging properties at a disordered critical point. Schehr G; Paul R Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016105. PubMed ID: 16090034 [TBL] [Abstract][Full Text] [Related]
5. Universality of domain growth in antiferromagnets with spin-exchange kinetics. Das P; Saha-Dasgupta T; Puri S Eur Phys J E Soft Matter; 2017 Nov; 40(11):94. PubMed ID: 29110108 [TBL] [Abstract][Full Text] [Related]
6. Probing criticality with linearly varying external fields: Renormalization group theory of nonequilibrium critical dynamics under driving. Zhong F Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):047102. PubMed ID: 16711952 [TBL] [Abstract][Full Text] [Related]
7. Quantum Monte Carlo study of the spin-1/2 honeycomb Heisenberg model with mixed antiferromagnetic and ferromagnetic interactions in external magnetic fields. Huang YZ; Su G Phys Rev E; 2017 May; 95(5-1):052147. PubMed ID: 28618482 [TBL] [Abstract][Full Text] [Related]
8. Field theory of bicritical and tetracritical points. IV. Critical dynamics including reversible terms. Folk R; Holovatch Y; Moser G Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021143. PubMed ID: 22463188 [TBL] [Abstract][Full Text] [Related]
9. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field. Korniss G; White CJ; Rikvold PA; Novotny MA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327 [TBL] [Abstract][Full Text] [Related]
10. Field theory of bicritical and tetracritical points. III. Relaxational dynamics including conservation of magnetization (model C). Folk R; Holovatch Y; Moser G Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031109. PubMed ID: 19391904 [TBL] [Abstract][Full Text] [Related]
11. Phase diagram for a two-dimensional, two-temperature, diffusive XY model. Reichl MD; Del Genio CI; Bassler KE Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):040102. PubMed ID: 21230222 [TBL] [Abstract][Full Text] [Related]
12. Critical dynamics of the antiferromagnetic O(3) nonlinear sigma model with conserved magnetization. Yao LH; Täuber UC Phys Rev E; 2022 Jun; 105(6-1):064128. PubMed ID: 35854614 [TBL] [Abstract][Full Text] [Related]
13. Bicritical universality of the anisotropic Heisenberg model in a crystal field. Freire RT; Plascak JA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032146. PubMed ID: 25871093 [TBL] [Abstract][Full Text] [Related]
14. Monte Carlo simulations of short-time critical dynamics with a conserved quantity. Zheng B; Luo HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066130. PubMed ID: 11415196 [TBL] [Abstract][Full Text] [Related]
15. Nonequilibrium critical dynamics of the two-dimensional Ashkin-Teller model at the Baxter line. Fernandes HA; da Silva R; Caparica AA; de Felício JRD Phys Rev E; 2017 Apr; 95(4-1):042105. PubMed ID: 28505782 [TBL] [Abstract][Full Text] [Related]
16. Short-time dynamics for the spin-3/2 Blume-Capel model. Grandi BC; Figueiredo W Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056109. PubMed ID: 15600694 [TBL] [Abstract][Full Text] [Related]
17. Nonequilibrium scaling explorations on a two-dimensional Z(5)-symmetric model. da Silva R; Fernandes HA; Drugowich de Felício JR Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042101. PubMed ID: 25375432 [TBL] [Abstract][Full Text] [Related]
20. Finite-time scaling via linear driving: application to the two-dimensional Potts model. Huang X; Gong S; Zhong F; Fan S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041139. PubMed ID: 20481709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]