These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33327194)

  • 1. Phase behavior of ultrasoft spheres show stable bcc lattices.
    Scotti A; Houston JE; Brugnoni M; Schmidt MM; Schulte MF; Bochenek S; Schweins R; Feoktystov A; Radulescu A; Richtering W
    Phys Rev E; 2020 Nov; 102(5-1):052602. PubMed ID: 33327194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient formation of bcc crystals in suspensions of poly(N-isopropylacrylamide)-based microgels.
    Gasser U; Lietor-Santos JJ; Scotti A; Bunk O; Menzel A; Fernandez-Nieves A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052308. PubMed ID: 24329265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals.
    Wang F; Han Y
    J Chem Phys; 2019 Jan; 150(1):014504. PubMed ID: 30621411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absence of crystals in the phase behavior of hollow microgels.
    Scotti A; Denton AR; Brugnoni M; Schweins R; Richtering W
    Phys Rev E; 2021 Feb; 103(2-1):022612. PubMed ID: 33736081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study.
    Stieger M; Pedersen JS; Lindner P; Richtering W
    Langmuir; 2004 Aug; 20(17):7283-92. PubMed ID: 15301516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fuzzy sphere morphology is responsible for the increase in light scattering during the shrinkage of thermoresponsive microgels.
    Ponomareva E; Tadgell B; Hildebrandt M; Krüsmann M; Prévost S; Mulvaney P; Karg M
    Soft Matter; 2022 Jan; 18(4):807-825. PubMed ID: 34939641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid-solid transitions in photonic crystals of soft, thermoresponsive microgels.
    Hildebrandt M; Pham Thuy D; Kippenberger J; Wigger TL; Houston JE; Scotti A; Karg M
    Soft Matter; 2023 Sep; 19(37):7122-7135. PubMed ID: 37695048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the bridging attraction between large hard particles by the softness of small microgels.
    Luo J; Yuan G; Han CC
    Soft Matter; 2016 Sep; 12(37):7863-7872. PubMed ID: 27714350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FCC-HCP coexistence in dense thermo-responsive microgel crystals.
    Karthickeyan D; Joshi RG; Tata BVR
    J Chem Phys; 2017 Jun; 146(22):224503. PubMed ID: 29166046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the volume fraction of soft deformable microgels by means of small-angle neutron scattering with contrast variation.
    Scotti A
    Soft Matter; 2021 Jun; 17(22):5548-5559. PubMed ID: 33978056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase behavior of ionic microgels.
    Gottwald D; Likos CN; Kahl G; Löwen H
    Phys Rev Lett; 2004 Feb; 92(6):068301. PubMed ID: 14995279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural ordering and phase behavior of charged microgels.
    Mohanty PS; Richtering W
    J Phys Chem B; 2008 Nov; 112(47):14692-7. PubMed ID: 18950219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composite hydrogels with temperature sensitive heterogeneities: influence of gel matrix on the volume phase transition of embedded poly-(N-isopropylacrylamide) microgels.
    Meid J; Friedrich T; Tieke B; Lindner P; Richtering W
    Phys Chem Chem Phys; 2011 Feb; 13(8):3039-47. PubMed ID: 20882241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the Responsivity of Solution-Suspended and Surface-Bound Poly(N-isopropylacrylamide)-Based Microgels for Sensing Applications.
    Li W; Hu L; Zhu J; Li D; Luan Y; Xu W; Serpe MJ
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26539-26548. PubMed ID: 28745477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and dynamics of a thermoresponsive microgel around its volume phase transition temperature.
    Ghugare SV; Chiessi E; Telling MT; Deriu A; Gerelli Y; Wuttke J; Paradossi G
    J Phys Chem B; 2010 Aug; 114(32):10285-93. PubMed ID: 20701364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Packing of crystalline structures of binary hard spheres: an analytical approach and application to amorphization.
    Brouwers HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041304. PubMed ID: 17994978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic Hollow Microgels That Can Adapt Their Size, Shape, and Softness.
    Nickel AC; Scotti A; Houston JE; Ito T; Crassous J; Pedersen JS; Richtering W
    Nano Lett; 2019 Nov; 19(11):8161-8170. PubMed ID: 31613114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real and In Silico Microgels Show Comparable Bulk Moduli Below and Above the Volume Phase Transition.
    Höfken T; Gasser U; Schneider S; Petrunin AV; Scotti A
    Macromol Rapid Commun; 2024 Jul; 45(13):e2400043. PubMed ID: 38613338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual temperature-induced swelling of ionizable poly(N-isopropylacrylamide)-based microgels: experimental and theoretical insights into its molecular origin.
    Giussi JM; Velasco MI; Longo GS; Acosta RH; Azzaroni O
    Soft Matter; 2015 Dec; 11(45):8879-86. PubMed ID: 26400774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning the Swelling Properties of Smart Multiresponsive Core-Shell Microgels by Copolymerization.
    Brändel T; Dirksen M; Hellweg T
    Polymers (Basel); 2019 Jul; 11(8):. PubMed ID: 31370213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.