These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33327196)

  • 1. Emergence of nonlinear crossover under epidemic dynamics in heterogeneous networks.
    Su Z; Gao C; Liu J; Jia T; Wang Z; Kurths J
    Phys Rev E; 2020 Nov; 102(5-1):052311. PubMed ID: 33327196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Centrality in Complex Networks with Overlapping Community Structure.
    Ghalmane Z; Cherifi C; Cherifi H; Hassouni ME
    Sci Rep; 2019 Jul; 9(1):10133. PubMed ID: 31300702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How memory generates heterogeneous dynamics in temporal networks.
    Vestergaard CL; Génois M; Barrat A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042805. PubMed ID: 25375547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standard random walks and trapping on the Koch network with scale-free behavior and small-world effect.
    Zhang Z; Zhou S; Xie W; Chen L; Lin Y; Guan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061113. PubMed ID: 19658479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic-Sensitive centrality of nodes in temporal networks.
    Huang DW; Yu ZG
    Sci Rep; 2017 Feb; 7():41454. PubMed ID: 28150735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth, collapse, and self-organized criticality in complex networks.
    Wang Y; Fan H; Lin W; Lai YC; Wang X
    Sci Rep; 2016 Apr; 6():24445. PubMed ID: 27079515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidemic dynamics in finite size scale-free networks.
    Pastor-Satorras R; Vespignani A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):035108. PubMed ID: 11909143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling dynamics of epidemic spreading and information diffusion on complex networks.
    Zhan XX; Liu C; Zhou G; Zhang ZK; Sun GQ; Zhu JJH; Jin Z
    Appl Math Comput; 2018 Sep; 332():437-448. PubMed ID: 32287501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying nodal properties that are crucial for the dynamical robustness of multistable networks.
    Rungta PD; Meena C; Sinha S
    Phys Rev E; 2018 Aug; 98(2-1):022314. PubMed ID: 30253521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal dynamics of connectivity and epidemic properties of growing networks.
    Fotouhi B; Shirkoohi MK
    Phys Rev E; 2016 Jan; 93(1):012301. PubMed ID: 26871086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contagion processes on the static and activity-driven coupling networks.
    Lei Y; Jiang X; Guo Q; Ma Y; Li M; Zheng Z
    Phys Rev E; 2016 Mar; 93(3):032308. PubMed ID: 27078367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of centrality for the identification of influential spreaders in complex networks.
    de Arruda GF; Barbieri AL; Rodríguez PM; Rodrigues FA; Moreno Y; Costa Lda F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032812. PubMed ID: 25314487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relation between structural and functional connectivity patterns in complex brain networks.
    Stam CJ; van Straaten EC; Van Dellen E; Tewarie P; Gong G; Hillebrand A; Meier J; Van Mieghem P
    Int J Psychophysiol; 2016 May; 103():149-60. PubMed ID: 25678023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locating the source of diffusion in complex networks by time-reversal backward spreading.
    Shen Z; Cao S; Wang WX; Di Z; Stanley HE
    Phys Rev E; 2016 Mar; 93(3):032301. PubMed ID: 27078360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation thresholds in epidemic spreading with motile infectious agents on scale-free networks.
    Silva DH; Ferreira SC
    Chaos; 2018 Dec; 28(12):123112. PubMed ID: 30599512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategy to suppress epidemic explosion in heterogeneous metapopulation networks.
    Shen C; Chen H; Hou Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036114. PubMed ID: 23030987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidemic spreading in metapopulation networks with heterogeneous infection rates.
    Gong YW; Song YR; Jiang GP
    Physica A; 2014 Dec; 416():208-218. PubMed ID: 32288090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Node importance for dynamical process on networks: a multiscale characterization.
    Zhang J; Xu XK; Li P; Zhang K; Small M
    Chaos; 2011 Mar; 21(1):016107. PubMed ID: 21456849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Entropy-Based Centrality Approach for Identifying Vital Nodes in Weighted Networks.
    Qiao T; Shan W; Yu G; Liu C
    Entropy (Basel); 2018 Apr; 20(4):. PubMed ID: 33265352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.