These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 333272)

  • 1. The generation of the proton electrochemical potential and its role in energy transduction.
    Azzone GF; Massari S; Pozzan T
    Mol Cell Biochem; 1977 Sep; 17(2):101-12. PubMed ID: 333272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine triphosphate synthesis by electrochemical proton gradient in vesicles reconstituted from purified adenosine triphosphatase and phospholipids of thermophilic bacterium.
    Sone N; Yoshida M; Hirata H; Kagawa Y
    J Biol Chem; 1977 May; 252(9):2956-60. PubMed ID: 16011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational model of active transport.
    Young JH; Blondin GA; Vanderkooi G; Green DE
    Proc Natl Acad Sci U S A; 1970 Oct; 67(2):550-9. PubMed ID: 5289009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obligatory coupling between proton entry and the synthesis of adenosine 5'-triphosphate in Streptococcus lactis.
    Maloney PC
    J Bacteriol; 1977 Nov; 132(2):564-75. PubMed ID: 21165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flip-flop model of energy interconversion by ATP synthetase.
    Repke KR; Schön R
    Acta Biol Med Ger; 1974; 33(1):K27-38. PubMed ID: 4278420
    [No Abstract]   [Full Text] [Related]  

  • 6. Proton semiconductors and energy transduction in biological systems.
    Morowitz HJ
    Am J Physiol; 1978 Sep; 235(3):R99-114. PubMed ID: 696856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transfer in mitochondrial synthesis of ATP; a survey.
    Klingenberg M
    Ciba Found Symp; 1975; (31):23-40. PubMed ID: 238807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton electrochemical gradients and energy-transduction processes.
    Ferguson SJ; Sorgato MC
    Annu Rev Biochem; 1982; 51():185-217. PubMed ID: 6287914
    [No Abstract]   [Full Text] [Related]  

  • 9. Potassium and proton movements in relation to the energy-linked transport of phosphate in liver mitochondria.
    Estrada-O S; Calderón E
    Biochemistry; 1970 May; 9(10):2092-9. PubMed ID: 5442174
    [No Abstract]   [Full Text] [Related]  

  • 10. The relation of proton motive force, adenylate energy charge and phosphorylation potential to the specific growth rate and efficiency of energy transduction in Bacillus licheniformis under aerobic growth conditions.
    Bulthuis BA; Koningstein GM; Stouthamer AH; van Verseveld HW
    Antonie Van Leeuwenhoek; 1993 Jan; 63(1):1-16. PubMed ID: 8386914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for conformational coupling of membrane potential and proton translocation to ATP synthesis and to active transport.
    Boyer PD
    FEBS Lett; 1975 Oct; 58(1):1-6. PubMed ID: 1225567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton electrochemical gradient and phosphate potential in mitochondria.
    Azzone GF; Pozzan T; Massari S
    Biochim Biophys Acta; 1978 Feb; 501(2):307-16. PubMed ID: 620018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical potential of protons in vesicles reconstituted from purified, proton-translocating adenosine triphosphatase.
    Sone N; Yoshida M; Hirata H; Okamoto H; Kagawa Y
    J Membr Biol; 1976 Dec; 30(2):121-34. PubMed ID: 13221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of the membrane potential on the Mg2+,ATP-dependent transport of Ca2+ across smooth muscle sarcolemma].
    Babich LG; Fomin VP; Kosterin SA
    Biokhimiia; 1990 Oct; 55(10):1890-901. PubMed ID: 2078629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes in cytochrome aa3 and ATP synthetase of the mitochondrial membrane and their role in mitochondrial energy transduction.
    Wikström MK; Saari HT
    Mol Cell Biochem; 1976 Mar; 11(1):17-33. PubMed ID: 5667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP synthesis in Methanobacterium thermoautotrophicum coupled to CH4 formation from H2 and CO2 in the apparent absence of an electrochemical proton potential across the cytoplasmic membrane.
    Schönheit P; Beimborn DB
    Eur J Biochem; 1985 May; 148(3):545-50. PubMed ID: 2986965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetic aspects of transport of ADP and ATP through the mitochondrial membrane.
    Klingenberg M
    Ciba Found Symp; 1975; (31):105-24. PubMed ID: 238804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient.
    Michel H; Oesterhelt D
    Biochemistry; 1980 Sep; 19(20):4607-14. PubMed ID: 7426619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The electrochemical transmission in I-Band segments of the mitochondrial reticulum.
    Patel KD; Glancy B; Balaban RS
    Biochim Biophys Acta; 2016 Aug; 1857(8):1284-1289. PubMed ID: 26921810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rate of ATP-synthesis as a function of delta pH and delta psi catalyzed by the active, reduced H(+)-ATPase from chloroplasts.
    Junesch U; Gräber P
    FEBS Lett; 1991 Dec; 294(3):275-8. PubMed ID: 1661688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.