These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33327208)

  • 1. Emergent excitability in populations of nonexcitable units.
    Ciszak M; Marino F; Torcini A; Olmi S
    Phys Rev E; 2020 Nov; 102(5-1):050201. PubMed ID: 33327208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collective excitability in highly diluted random networks of oscillators.
    Paolini G; Ciszak M; Marino F; Olmi S; Torcini A
    Chaos; 2022 Oct; 32(10):103108. PubMed ID: 36319301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noise-induced dynamical regimes in a system of globally coupled excitable units.
    Klinshov VV; Kirillov SY; Nekorkin VI; Wolfrum M
    Chaos; 2021 Aug; 31(8):083103. PubMed ID: 34470239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chimera-like behavior in a heterogeneous Kuramoto model: The interplay between attractive and repulsive coupling.
    Frolov N; Maksimenko V; Majhi S; Rakshit S; Ghosh D; Hramov A
    Chaos; 2020 Aug; 30(8):081102. PubMed ID: 32872824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collective Activity Bursting in a Population of Excitable Units Adaptively Coupled to a Pool of Resources.
    Franović I; Eydam S; Yanchuk S; Berner R
    Front Netw Physiol; 2022; 2():841829. PubMed ID: 36926089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization in populations of electrochemical bursting oscillators with chaotic slow dynamics.
    Magrini LA; Oliveira Domingues M; Macau EEN; Kiss IZ
    Chaos; 2021 May; 31(5):053125. PubMed ID: 34240953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators.
    Papadopoulos L; Kim JZ; Kurths J; Bassett DS
    Chaos; 2017 Jul; 27(7):073115. PubMed ID: 28764402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaos in networks of coupled oscillators with multimodal natural frequency distributions.
    Smith LD; Gottwald GA
    Chaos; 2019 Sep; 29(9):093127. PubMed ID: 31575123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-dimensional dynamics of the Kuramoto model with rational frequency distributions.
    Skardal PS
    Phys Rev E; 2018 Aug; 98(2-1):022207. PubMed ID: 30253541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators.
    Campbell S; Wang D
    IEEE Trans Neural Netw; 1996; 7(3):541-54. PubMed ID: 18263453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillations and collective excitability in a model of stochastic neurons under excitatory and inhibitory coupling.
    Lima Dias Pinto I; Copelli M
    Phys Rev E; 2019 Dec; 100(6-1):062416. PubMed ID: 31962449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase synchronization between collective rhythms of globally coupled oscillator groups: noisy identical case.
    Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y
    Chaos; 2010 Dec; 20(4):043109. PubMed ID: 21198079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bifurcations in the Kuramoto model on graphs.
    Chiba H; Medvedev GS; Mizuhara MS
    Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability.
    Zou W; Wang J
    Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase synchronization between collective rhythms of globally coupled oscillator groups: noiseless nonidentical case.
    Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y
    Chaos; 2010 Dec; 20(4):043110. PubMed ID: 21198080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two scenarios for the onset and suppression of collective oscillations in heterogeneous populations of active rotators.
    Klinshov V; Franović I
    Phys Rev E; 2019 Dec; 100(6-1):062211. PubMed ID: 31962480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blinking chimeras in globally coupled rotators.
    Goldschmidt RJ; Pikovsky A; Politi A
    Chaos; 2019 Jul; 29(7):071101. PubMed ID: 31370417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Path-dependent dynamics induced by rewiring networks of inertial oscillators.
    Qian W; Papadopoulos L; Lu Z; Kroma-Wiley KA; Pasqualetti F; Bassett DS
    Phys Rev E; 2022 Feb; 105(2-1):024304. PubMed ID: 35291167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic Diversity Suppresses Complex Collective Behavior in Networks of Theta Neurons.
    Lin L; Barreto E; So P
    Front Comput Neurosci; 2020; 14():44. PubMed ID: 32528269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal dynamics of the Kuramoto-Sakaguchi model with time-dependent connectivity.
    Banerjee A; Acharyya M
    Phys Rev E; 2016 Aug; 94(2-1):022213. PubMed ID: 27627304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.