BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33327463)

  • 1. Structural Insight into the Contributions of the N-Terminus and Key Active-Site Residues to the Catalytic Efficiency of Glutamine Synthetase 2.
    Chen WT; Yang HY; Lin CY; Lee YZ; Ma SC; Chen WC; Yin HS
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33327463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of mammalian glutamine synthetases illustrate substrate-induced conformational changes and provide opportunities for drug and herbicide design.
    Krajewski WW; Collins R; Holmberg-Schiavone L; Jones TA; Karlberg T; Mowbray SL
    J Mol Biol; 2008 Jan; 375(1):217-28. PubMed ID: 18005987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of the Bacillus subtilis glutamine synthetase dodecamer reveal large intersubunit catalytic conformational changes linked to a unique feedback inhibition mechanism.
    Murray DS; Chinnam N; Tonthat NK; Whitfill T; Wray LV; Fisher SH; Schumacher MA
    J Biol Chem; 2013 Dec; 288(50):35801-11. PubMed ID: 24158439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.
    Liaw SH; Kuo I; Eisenberg D
    Protein Sci; 1995 Nov; 4(11):2358-65. PubMed ID: 8563633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic structure of plant glutamine synthetase: a key enzyme for plant productivity.
    Unno H; Uchida T; Sugawara H; Kurisu G; Sugiyama T; Yamaya T; Sakakibara H; Hase T; Kusunoki M
    J Biol Chem; 2006 Sep; 281(39):29287-96. PubMed ID: 16829528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The isolated, twenty-three-residue-long, N-terminal region of the glutamine synthetase inactivating factor binds to its target.
    Neira JL; Florencio FJ; Muro-Pastor MI
    Biophys Chem; 2017 Sep; 228():1-9. PubMed ID: 28601005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the intersubunit ammonia tunnel in Mycobacterium tuberculosis glutamine-dependent NAD+ synthetase.
    Chuenchor W; Doukov TI; Resto M; Chang A; Gerratana B
    Biochem J; 2012 Apr; 443(2):417-26. PubMed ID: 22280445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-dependent self-assembly of protein tubes from Escherichia coli glutamine synthetase. Cu(2+) EPR studies of the ligation and stoichiometry of intermolecular metal binding sites.
    Schurke P; Freeman JC; Dabrowski MJ; Atkins WM
    J Biol Chem; 1999 Sep; 274(39):27963-8. PubMed ID: 10488145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of divalent cations on the catalytic properties and secondary structure of unadenylylated glutamine synthetase from Azospirillum brasilense.
    Antonyuk LP; Smirnova VE; Kamnev AA; Serebrennikova OB; Vanoni MA; Zanetti G; Kudelina IA; Sokolov OI; Ignatov VV
    Biometals; 2001 Mar; 14(1):13-22. PubMed ID: 11368271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of an essential cysteinyl residue for the structure of glutamine synthetase alpha from Phaseolus vulgaris.
    Estivill G; Guardado P; Buser R; Betti M; Márquez AJ
    Planta; 2010 Apr; 231(5):1101-11. PubMed ID: 20237895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the aggregation properties of dodecameric glutamine synthetase: a single amino acid substitution controls 'salting out'.
    Dabrowski MJ; Dietze EC; Atkins WM
    Protein Eng; 1996 Mar; 9(3):291-8. PubMed ID: 8736496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A source of ultrasensitivity in the glutamine response of the bicyclic cascade system controlling glutamine synthetase adenylylation state and activity in Escherichia coli.
    Jiang P; Ninfa AJ
    Biochemistry; 2011 Dec; 50(50):10929-40. PubMed ID: 22085244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural exploration of glutamine synthetase from Leishmania donovani: Insights from in silico and in vitro analysis.
    Kumar V; Sushma Sri N; Tripathi N; Sharma VK; Bharatam PV; Garg P; Singh S
    Int J Biol Macromol; 2020 Mar; 146():860-874. PubMed ID: 31726137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Analysis of Glutamine Synthetase from Helicobacter pylori.
    Joo HK; Park YW; Jang YY; Lee JY
    Sci Rep; 2018 Aug; 8(1):11657. PubMed ID: 30076387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural model for the reaction mechanism of glutamine synthetase, based on five crystal structures of enzyme-substrate complexes.
    Liaw SH; Eisenberg D
    Biochemistry; 1994 Jan; 33(3):675-81. PubMed ID: 7904828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamine synthetase isoforms in nitrogen-fixing soybean nodules: distinct oligomeric structures and thiol-based regulation.
    Masalkar PD; Roberts DM
    FEBS Lett; 2015 Jan; 589(2):215-21. PubMed ID: 25497014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamine Synthetase Drugability beyond Its Active Site: Exploring Oligomerization Interfaces and Pockets.
    Moreira C; Ramos MJ; Fernandes PA
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27509490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved fluorescence and computational studies of adenylylated glutamine synthetase: analysis of intersubunit interactions.
    Atkins WM; Cader BM; Hemmingsen J; Villafranca JJ
    Protein Sci; 1993 May; 2(5):800-13. PubMed ID: 8098638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The central loop of Escherichia coli glutamine synthetase is flexible and functionally passive.
    Pearson JT; Dabrowski MJ; Kung I; Atkins WM
    Arch Biochem Biophys; 2005 Apr; 436(2):397-405. PubMed ID: 15797252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the N-terminal domain of Escherichia coli glutamine synthetase adenylyltransferase.
    Xu Y; Zhang R; Joachimiak A; Carr PD; Huber T; Vasudevan SG; Ollis DL
    Structure; 2004 May; 12(5):861-9. PubMed ID: 15130478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.