These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33327472)

  • 1. Remotely Piloted Aircraft System (RPAS)-Based Wildlife Detection: A Review and Case Studies in Maritime Antarctica.
    Hyun CU; Park M; Lee WY
    Animals (Basel); 2020 Dec; 10(12):. PubMed ID: 33327472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence on the efficacy of small unoccupied aircraft systems (UAS) as a survey tool for North American terrestrial, vertebrate animals: a systematic map.
    Elmore JA; Schultz EA; Jones LR; Evans KO; Samiappan S; Pfeiffer MB; Blackwell BF; Iglay RB
    Environ Evid; 2023 Feb; 12(1):3. PubMed ID: 39294790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domesticating the Drone: The Demilitarisation of Unmanned Aircraft for Civil Markets.
    Boucher P
    Sci Eng Ethics; 2015 Dec; 21(6):1393-412. PubMed ID: 25371277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pioneering Remotely Piloted Aerial Systems (Drone) Delivery of a Remotely Telementored Ultrasound Capability for Self Diagnosis and Assessment of Vulnerable Populations-the Sky Is the Limit.
    Kirkpatrick AW; McKee JL; Moeini S; Conly JM; Ma IWY; Baylis B; Hawkins W
    J Digit Imaging; 2021 Aug; 34(4):841-845. PubMed ID: 34173090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time drone derived thermal imagery outperforms traditional survey methods for an arboreal forest mammal.
    Witt RR; Beranek CT; Howell LG; Ryan SA; Clulow J; Jordan NR; Denholm B; Roff A
    PLoS One; 2020; 15(11):e0242204. PubMed ID: 33196649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possibilities of Using UAVs in Pre-Hospital Security for Medical Emergencies.
    Robakowska M; Ślęzak D; Żuratyński P; Tyrańska-Fobke A; Robakowski P; Prędkiewicz P; Zorena K
    Int J Environ Res Public Health; 2022 Aug; 19(17):. PubMed ID: 36078469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating sociotechnical dynamics in a simulated remotely-piloted aircraft system: a layered dynamics approach.
    Gorman JC; Demir M; Cooke NJ; Grimm DA
    Ergonomics; 2019 May; 62(5):629-643. PubMed ID: 30526423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation.
    Gonzalez LF; Montes GA; Puig E; Johnson S; Mengersen K; Gaston KJ
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26784196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drone images afford more detections of marine wildlife than real-time observers during simultaneous large-scale surveys.
    Hodgson AJ; Kelly N; Peel D
    PeerJ; 2023; 11():e16186. PubMed ID: 37941930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occupational stress in Remotely Piloted Aircraft System operators.
    Phillips A; Sherwood D; Greenberg N; Jones N
    Occup Med (Lond); 2019 Jun; 69(4):244-250. PubMed ID: 31232444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery.
    Seymour AC; Dale J; Hammill M; Halpin PN; Johnston DW
    Sci Rep; 2017 Mar; 7():45127. PubMed ID: 28338047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dataset for multi-sensor drone detection.
    Svanström F; Alonso-Fernandez F; Englund C
    Data Brief; 2021 Dec; 39():107521. PubMed ID: 34765710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Managing the Risks Remotely Piloted Aircraft Operations Pose to People and Property on the Ground.
    Clothier RA; Williams BP; Hayhurst KJ
    Saf Sci; 2018 Jan; 101():33-47. PubMed ID: 32801478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New technologies in the mix: Assessing N-mixture models for abundance estimation using automated detection data from drone surveys.
    Corcoran E; Denman S; Hamilton G
    Ecol Evol; 2020 Aug; 10(15):8176-8185. PubMed ID: 32788970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of two Arctic birds in Greenland and an endangered bird in Korea using RGB and thermal cameras with an unmanned aerial vehicle (UAV).
    Lee WY; Park M; Hyun CU
    PLoS One; 2019; 14(9):e0222088. PubMed ID: 31483842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.
    Hodgson A; Peel D; Kelly N
    Ecol Appl; 2017 Jun; 27(4):1253-1267. PubMed ID: 28178755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remotely piloted aircraft-based automated vertical surface survey.
    Grohmann CH; Viana CD; Garcia GPB; Albuquerque RW
    MethodsX; 2023; 10():101982. PubMed ID: 36593760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A remotely piloted aircraft system in major incident management: concept and pilot, feasibility study.
    Abrahamsen HB
    BMC Emerg Med; 2015 Jun; 15():12. PubMed ID: 26054527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unmanned aerial vehicles (UAVs) with thermal infrared (TIR) sensors are effective for monitoring and counting threatened Vietnamese primates.
    Gazagne E; Gray RJ; Ratajszczak R; Brotcorne F; Hambuckers A
    Primates; 2023 Jul; 64(4):407-413. PubMed ID: 37140752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Airborne Optical and Thermal Remote Sensing for Wildfire Detection and Monitoring.
    Allison RS; Johnston JM; Craig G; Jennings S
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.