These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33327472)

  • 21. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Precision wildlife monitoring using unmanned aerial vehicles.
    Hodgson JC; Baylis SM; Mott R; Herrod A; Clarke RH
    Sci Rep; 2016 Mar; 6():22574. PubMed ID: 26986721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aerial Wildlife Image Repository for animal monitoring with drones in the age of artificial intelligence.
    Samiappan S; Krishnan BS; Dehart D; Jones LR; Elmore JA; Evans KO; Iglay RB
    Database (Oxford); 2024 Jul; 2024():. PubMed ID: 39043628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heating decoys to mimic thermal signatures of live animals for drones.
    Jones LR; Mensah C; Elmore JA; Evans KO; Pfeiffer MB; Blackwell BF; Iglay RB
    MethodsX; 2024 Dec; 13():102933. PubMed ID: 39286441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of an Acoustic System for UAV Detection.
    Dumitrescu C; Minea M; Costea IM; Cosmin Chiva I; Semenescu A
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32872231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Malicious UAV Detection Using Integrated Audio and Visual Features for Public Safety Applications.
    Jamil S; Fawad ; Rahman M; Ullah A; Badnava S; Forsat M; Mirjavadi SS
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32679644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa.
    Mulero-Pázmány M; Stolper R; van Essen LD; Negro JJ; Sassen T
    PLoS One; 2014; 9(1):e83873. PubMed ID: 24416177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Applications of unmanned aerial vehicles in Antarctic environmental research.
    Tovar-Sánchez A; Román A; Roque-Atienza D; Navarro G
    Sci Rep; 2021 Nov; 11(1):21717. PubMed ID: 34741078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flower Mapping in Grasslands With Drones and Deep Learning.
    Gallmann J; Schüpbach B; Jacot K; Albrecht M; Winizki J; Kirchgessner N; Aasen H
    Front Plant Sci; 2021; 12():774965. PubMed ID: 35222449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimating distribution of hidden objects with drones: from tennis balls to manatees.
    Martin J; Edwards HH; Burgess MA; Percival HF; Fagan DE; Gardner BE; Ortega-Ortiz JG; Ifju PG; Evers BS; Rambo TJ
    PLoS One; 2012; 7(6):e38882. PubMed ID: 22761712
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure from Motion Multisource Application for Landslide Characterization and Monitoring: The Champlas du Col Case Study, Sestriere, North-Western Italy.
    Cignetti M; Godone D; Wrzesniak A; Giordan D
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31121988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The AIDSS Module for Data Acquisition in Crisis Situations and Environmental Protection.
    Krtalić A; Bajić M; Ivelja T; Racetin I
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32110938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing Remotely Piloted Aerial Systems in the characterization of rocky shores for oil spills environmental sensitivity mapping, northern São Paulo littoral, Brazil.
    Cerri RI; Rodrigues FH; Oliveira GHS; Reis FAGV; Wieczorek A; Longhitano GA; Duarte DM
    An Acad Bras Cienc; 2022; 94(suppl 4):e20210946. PubMed ID: 36449859
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The application of low-altitude near-infrared aerial photography for detecting clandestine burials using a UAV and low-cost unmodified digital camera.
    Evers R; Masters P
    Forensic Sci Int; 2018 Aug; 289():408-418. PubMed ID: 30025566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated detection of koalas using low-level aerial surveillance and machine learning.
    Corcoran E; Denman S; Hanger J; Wilson B; Hamilton G
    Sci Rep; 2019 Mar; 9(1):3208. PubMed ID: 30824795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution.
    Park S; Lee H; Chon J
    Environ Pollut; 2019 Apr; 247():340-348. PubMed ID: 30690230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unoccupied Aircraft Systems in Marine Science and Conservation.
    Johnston DW
    Ann Rev Mar Sci; 2019 Jan; 11():439-463. PubMed ID: 30020850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Best practice for minimising unmanned aerial vehicle disturbance to wildlife in biological field research.
    Hodgson JC; Koh LP
    Curr Biol; 2016 May; 26(10):R404-5. PubMed ID: 27218843
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bi-directional drones to strengthen healthcare provision: experiences and lessons from Madagascar, Malawi and Senegal.
    Knoblauch AM; de la Rosa S; Sherman J; Blauvelt C; Matemba C; Maxim L; Defawe OD; Gueye A; Robertson J; McKinney J; Brew J; Paz E; Small PM; Tanner M; Rakotosamimanana N; Grandjean Lapierre S
    BMJ Glob Health; 2019; 4(4):e001541. PubMed ID: 31413873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Smarter faster just-in-time hemorrhage control: A pilot evaluation of remotely piloted aircraft system delivered STOP-THE-BLEED equipment with just-in-time remote telementored deployment.
    Kirkpatrick AW; McKee JL; Conly JM; Flemons K; Hawkins W
    Heliyon; 2023 Jan; 9(1):e12985. PubMed ID: 36820166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.