These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 33327500)

  • 1. Performance Analysis of a Head and Eye Motion-Based Control Interface for Assistive Robots.
    Stalljann S; Wöhle L; Schäfer J; Gebhard M
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33327500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Robust Robot Control in Cartesian Space Using an Infrastructureless Head- and Eye-Gaze Interface.
    Wöhle L; Gebhard M
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33807599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMiCUS-A Head Motion-Based Interface for Control of an Assistive Robot.
    Rudigkeit N; Gebhard M
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31242706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless intraoral tongue control of an assistive robotic arm for individuals with tetraplegia.
    Andreasen Struijk LNS; Egsgaard LL; Lontis R; Gaihede M; Bentsen B
    J Neuroeng Rehabil; 2017 Nov; 14(1):110. PubMed ID: 29110736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multimodal Assistive-Robotic-Arm Control System to Increase Independence After Tetraplegia.
    Hansen TC; Tully TN; John Mathews V; Warren DJ
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2124-2133. PubMed ID: 38829756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual Sensor Fusion Based Autonomous Robotic System for Assistive Drinking.
    Try P; Schöllmann S; Wöhle L; Gebhard M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SteadEye-Head-Improving MARG-Sensor Based Head Orientation Measurements Through Eye Tracking Data.
    Wöhle L; Gebhard M
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32408630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling an effector with eye movements: The effect of entangled sensory and motor responsibilities.
    Schultz JR; Slifkin AB; Schearer EM
    PLoS One; 2022; 17(2):e0263440. PubMed ID: 35113943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot Learning of Assistive Manipulation Tasks by Demonstration via Head Gesture-based Interface.
    Kyrarini M; Zheng Q; Haseeb MA; Graser A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1139-1146. PubMed ID: 31374783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of tooth-click triggering and speech recognition in assistive technology for computer access.
    Simpson T; Gauthier M; Prochazka A
    Neurorehabil Neural Repair; 2010 Feb; 24(2):188-94. PubMed ID: 19679651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Head Motion and Head Gesture-Based Robot Control: A Usability Study.
    Jackowski A; Gebhard M; Thietje R
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):161-170. PubMed ID: 29324407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Case study: Head orientation and neck electromyography for cursor control in persons with high cervical tetraplegia.
    Williams MR; Kirsch RF
    J Rehabil Res Dev; 2016; 53(4):519-30. PubMed ID: 27532681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proof-of-Concept: A Hands-Free Interface for Robot-Assisted Self-Feeding.
    Schultz JR; Slifkin AB; Yu H; Schearer EM
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autonomous Multi-Sensory Robotic Assistant for a Drinking Task.
    Goldau FF; Shastha TK; Kyrarini M; Graser A
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():210-216. PubMed ID: 31374632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of feedback and target size on eye gaze accuracy in an off-screen task.
    Sakamaki I; Adams K; Tavakoli M; Wiebe SA
    Disabil Rehabil Assist Technol; 2021 Oct; 16(7):769-779. PubMed ID: 32100583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of head orientation and neck muscle EMG signals as command inputs to a human-computer interface for individuals with high tetraplegia.
    Williams MR; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2008 Oct; 16(5):485-96. PubMed ID: 18990652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A system for bedside assistance that integrates a robotic bed and a mobile manipulator.
    Kapusta AS; Grice PM; Clever HM; Chitalia Y; Park D; Kemp CC
    PLoS One; 2019; 14(10):e0221854. PubMed ID: 31618205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative performance analysis of M-IMU/EMG and voice user interfaces for assistive robots.
    Laureiti C; Cordella F; di Luzio FS; Saccucci S; Davalli A; Sacchetti R; Zollo L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1001-1006. PubMed ID: 28813952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Hands-free Human-Computer-Interface Platform for Paralyzed Patients Using a TENG-based Eyelash Motion Sensor.
    Vera Anaya DF; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4567-4570. PubMed ID: 33019010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eyes-Free Tongue Gesture and Tongue Joystick Control of a Five DOF Upper-Limb Exoskeleton for Severely Disabled Individuals.
    Mohammadi M; Knoche H; Thøgersen M; Bengtson SH; Gull MA; Bentsen B; Gaihede M; Severinsen KE; Andreasen Struijk LNS
    Front Neurosci; 2021; 15():739279. PubMed ID: 34975367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.