BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 33327645)

  • 1. The Role of BAR Proteins and the Glycocalyx in Brain Endothelium Transcytosis.
    M Leite D; Matias D; Battaglia G
    Cells; 2020 Dec; 9(12):. PubMed ID: 33327645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular transport and regulation of transcytosis across the blood-brain barrier.
    Villaseñor R; Lampe J; Schwaninger M; Collin L
    Cell Mol Life Sci; 2019 Mar; 76(6):1081-1092. PubMed ID: 30523362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. II. Adsorptive transcytosis of WGA-HRP and the blood-brain and brain-blood barriers.
    Villegas JC; Broadwell RD
    J Neurocytol; 1993 Feb; 22(2):67-80. PubMed ID: 7680372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycocalyx is critical for blood-brain barrier integrity by suppressing caveolin1-dependent endothelial transcytosis following ischemic stroke.
    Zhu J; Li Z; Ji Z; Wu Y; He Y; Liu K; Chang Y; Peng Y; Lin Z; Wang S; Wang D; Huang K; Pan S
    Brain Pathol; 2022 Jan; 32(1):e13006. PubMed ID: 34286899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intertwined mechanisms define transport of anti-ICAM nanocarriers across the endothelium and brain delivery of a therapeutic enzyme.
    Manthe RL; Loeck M; Bhowmick T; Solomon M; Muro S
    J Control Release; 2020 Aug; 324():181-193. PubMed ID: 32389778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarized α-synuclein trafficking and transcytosis across brain endothelial cells via Rab7-decorated carriers.
    Alam P; Holst MR; Lauritsen L; Nielsen J; Nielsen SSE; Jensen PH; Brewer JR; Otzen DE; Nielsen MS
    Fluids Barriers CNS; 2022 May; 19(1):37. PubMed ID: 35637478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Glycocalyx and Pressure-Dependent Transcellular Albumin Transport.
    Dull RO; Chignalia AZ
    Cardiovasc Eng Technol; 2020 Dec; 11(6):655-662. PubMed ID: 33006050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular trafficking and transcytosis efficacy of different receptor types for therapeutic antibody delivery at the blood‒brain barrier.
    Holst MR; de Wit NM; Ozgür B; Brachner A; Hyldig K; Appelt-Menzel A; Sleven H; Cader Z; de Vries HE; Neuhaus W; Jensen A; Brodin B; Nielsen MS
    Fluids Barriers CNS; 2023 Nov; 20(1):82. PubMed ID: 37932749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. I. Choroid plexus and the blood-cerebrospinal fluid barrier.
    Balin BJ; Broadwell RD
    J Neurocytol; 1988 Dec; 17(6):809-26. PubMed ID: 3230399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorting Tubules Regulate Blood-Brain Barrier Transcytosis.
    Villaseñor R; Schilling M; Sundaresan J; Lutz Y; Collin L
    Cell Rep; 2017 Dec; 21(11):3256-3270. PubMed ID: 29241551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular determinants of endothelial transcytosis and their role in endothelial permeability.
    Predescu SA; Predescu DN; Malik AB
    Am J Physiol Lung Cell Mol Physiol; 2007 Oct; 293(4):L823-42. PubMed ID: 17644753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-regulation of transcellular and paracellular leak across microvascular endothelium by dynamin and Rac.
    Armstrong SM; Khajoee V; Wang C; Wang T; Tigdi J; Yin J; Kuebler WM; Gillrie M; Davis SP; Ho M; Lee WL
    Am J Pathol; 2012 Mar; 180(3):1308-1323. PubMed ID: 22203054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bidirectional apical-basal traffic of the cation-independent mannose-6-phosphate receptor in brain endothelial cells.
    Siupka P; Hersom MN; Lykke-Hartmann K; Johnsen KB; Thomsen LB; Andresen TL; Moos T; Abbott NJ; Brodin B; Nielsen MS
    J Cereb Blood Flow Metab; 2017 Jul; 37(7):2598-2613. PubMed ID: 28337939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of glutathione conjugation on the transcellular transport process of PEGylated liposomes across the blood brain barrier.
    Reginald-Opara JN; Tang M; Svirskis D; Chamley L; Wu Z
    Int J Pharm; 2022 Oct; 626():122152. PubMed ID: 36055442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the cell surface glycocalyx in drug delivery to and through the endothelium.
    Fu L; Kim HN; Sterling JD; Baker SM; Lord MS
    Adv Drug Deliv Rev; 2022 May; 184():114195. PubMed ID: 35292326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An on-chip model of protein paracellular and transcellular permeability in the microcirculation.
    Offeddu GS; Haase K; Gillrie MR; Li R; Morozova O; Hickman D; Knutson CG; Kamm RD
    Biomaterials; 2019 Aug; 212():115-125. PubMed ID: 31112823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor.
    Broadwell RD; Baker-Cairns BJ; Friden PM; Oliver C; Villegas JC
    Exp Neurol; 1996 Nov; 142(1):47-65. PubMed ID: 8912898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathways of protein and lipid receptor-mediated transcytosis in drug delivery.
    Thuenauer R; Müller SK; Römer W
    Expert Opin Drug Deliv; 2017 Mar; 14(3):341-351. PubMed ID: 27500785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities.
    Fung KYY; Fairn GD; Lee WL
    Traffic; 2018 Jan; 19(1):5-18. PubMed ID: 28985008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcytosis in the development and morphogenesis of epithelial tissues.
    Serra ND; Sundaram MV
    EMBO J; 2021 May; 40(9):e106163. PubMed ID: 33792936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.