These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2538 related articles for article (PubMed ID: 33328078)

  • 1. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.
    Thorsen-Meyer HC; Nielsen AB; Nielsen AP; Kaas-Hansen BS; Toft P; Schierbeck J; Strøm T; Chmura PJ; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Belling K; Brunak S; Perner A
    Lancet Digit Health; 2020 Apr; 2(4):e179-e191. PubMed ID: 33328078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Survival prediction in intensive-care units based on aggregation of long-term disease history and acute physiology: a retrospective study of the Danish National Patient Registry and electronic patient records.
    Nielsen AB; Thorsen-Meyer HC; Belling K; Nielsen AP; Thomas CE; Chmura PJ; Lademann M; Moseley PL; Heimann M; Dybdahl L; Spangsege L; Hulsen P; Perner A; Brunak S
    Lancet Digit Health; 2019 Jun; 1(2):e78-e89. PubMed ID: 33323232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation.
    Liu X; Hu P; Yeung W; Zhang Z; Ho V; Liu C; Dumontier C; Thoral PJ; Mao Z; Cao D; Mark RG; Zhang Z; Feng M; Li D; Celi LA
    Lancet Digit Health; 2023 Oct; 5(10):e657-e667. PubMed ID: 37599147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study.
    Pirracchio R; Petersen ML; Carone M; Rigon MR; Chevret S; van der Laan MJ
    Lancet Respir Med; 2015 Jan; 3(1):42-52. PubMed ID: 25466337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction and evaluation of a mortality prediction model for patients with acute kidney injury undergoing continuous renal replacement therapy based on machine learning algorithms.
    Wang Y; Sun X; Lu J; Zhong L; Yang Z
    Ann Med; 2024 Dec; 56(1):2388709. PubMed ID: 39155811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospective and External Evaluation of a Machine Learning Model to Predict In-Hospital Mortality of Adults at Time of Admission.
    Brajer N; Cozzi B; Gao M; Nichols M; Revoir M; Balu S; Futoma J; Bae J; Setji N; Hernandez A; Sendak M
    JAMA Netw Open; 2020 Feb; 3(2):e1920733. PubMed ID: 32031645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach.
    Awad A; Bader-El-Den M; McNicholas J; Briggs J
    Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU.
    Kong G; Lin K; Hu Y
    BMC Med Inform Decis Mak; 2020 Oct; 20(1):251. PubMed ID: 33008381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The SAPS 3 score as a predictor of hospital mortality in a South African tertiary intensive care unit: A prospective cohort study.
    van der Merwe E; Kapp J; Pazi S; Aylward R; Van Niekerk M; Mrara B; Freercks R
    PLoS One; 2020; 15(5):e0233317. PubMed ID: 32437390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning-based prediction of clinical outcomes after traumatic brain injury: Hidden information of early physiological time series.
    Ding R; Deng M; Wei H; Zhang Y; Wei L; Jiang G; Zhu H; Huang X; Fu H; Zhao S; Yuan H
    CNS Neurosci Ther; 2024 Jul; 30(7):e14848. PubMed ID: 38973193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic ElecTronic hEalth reCord deTection (DETECT) of individuals at risk of a first episode of psychosis: a case-control development and validation study.
    Raket LL; Jaskolowski J; Kinon BJ; Brasen JC; Jönsson L; Wehnert A; Fusar-Poli P
    Lancet Digit Health; 2020 May; 2(5):e229-e239. PubMed ID: 33328055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model.
    Lin K; Hu Y; Kong G
    Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplified prognostic model for critically ill patients in resource limited settings in South Asia.
    Haniffa R; Mukaka M; Munasinghe SB; De Silva AP; Jayasinghe KSA; Beane A; de Keizer N; Dondorp AM
    Crit Care; 2017 Oct; 21(1):250. PubMed ID: 29041985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Mortality and Major Adverse Kidney Events in Critically Ill Patients With Acute Kidney Injury.
    Neyra JA; Ortiz-Soriano V; Liu LJ; Smith TD; Li X; Xie D; Adams-Huet B; Moe OW; Toto RD; Chen J
    Am J Kidney Dis; 2023 Jan; 81(1):36-47. PubMed ID: 35868537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and external validation of a dynamic risk score for early prediction of cardiogenic shock in cardiac intensive care units using machine learning.
    Hu Y; Lui A; Goldstein M; Sudarshan M; Tinsay A; Tsui C; Maidman SD; Medamana J; Jethani N; Puli A; Nguy V; Aphinyanaphongs Y; Kiefer N; Smilowitz NR; Horowitz J; Ahuja T; Fishman GI; Hochman J; Katz S; Bernard S; Ranganath R
    Eur Heart J Acute Cardiovasc Care; 2024 Jun; 13(6):472-480. PubMed ID: 38518758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of SAPS II according to ICU length of stay: A Danish nationwide cohort study.
    Granholm A; Christiansen CF; Christensen S; Perner A; Møller MH
    Acta Anaesthesiol Scand; 2019 Oct; 63(9):1200-1209. PubMed ID: 31197823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study.
    Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S
    J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Intensive Care Unit Readmission with Machine Learning Using Electronic Health Record Data.
    Rojas JC; Carey KA; Edelson DP; Venable LR; Howell MD; Churpek MM
    Ann Am Thorac Soc; 2018 Jul; 15(7):846-853. PubMed ID: 29787309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Validation of Unplanned Extubation Prediction Models Using Intensive Care Unit Data: Retrospective, Comparative, Machine Learning Study.
    Hur S; Min JY; Yoo J; Kim K; Chung CR; Dykes PC; Cha WC
    J Med Internet Res; 2021 Aug; 23(8):e23508. PubMed ID: 34382940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Validation of a Robust and Interpretable Early Triaging Support System for Patients Hospitalized With COVID-19: Predictive Algorithm Modeling and Interpretation Study.
    Baek S; Jeong YJ; Kim YH; Kim JY; Kim JH; Kim EY; Lim JK; Kim J; Kim Z; Kim K; Chung MJ
    J Med Internet Res; 2024 Jan; 26():e52134. PubMed ID: 38206673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 127.