These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33328125)

  • 1. Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study.
    Monteiro M; Newcombe VFJ; Mathieu F; Adatia K; Kamnitsas K; Ferrante E; Das T; Whitehouse D; Rueckert D; Menon DK; Glocker B
    Lancet Digit Health; 2020 Jun; 2(6):e314-e322. PubMed ID: 33328125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of therapeutic intensity level from automatic multiclass segmentation of traumatic brain injury lesions on CT-scans.
    Brossard C; Grèze J; de Busschère JA; Attyé A; Richard M; Tornior FD; Acquitter C; Payen JF; Barbier EL; Bouzat P; Lemasson B
    Sci Rep; 2023 Nov; 13(1):20155. PubMed ID: 37978266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset.
    Xu M; Qi S; Yue Y; Teng Y; Xu L; Yao Y; Qian W
    Biomed Eng Online; 2019 Jan; 18(1):2. PubMed ID: 30602393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study.
    Zhang G; Fu DJ; Liefers B; Faes L; Glinton S; Wagner S; Struyven R; Pontikos N; Keane PA; Balaskas K
    Lancet Digit Health; 2021 Oct; 3(10):e665-e675. PubMed ID: 34509423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation.
    Liu KL; Wu T; Chen PT; Tsai YM; Roth H; Wu MS; Liao WC; Wang W
    Lancet Digit Health; 2020 Jun; 2(6):e303-e313. PubMed ID: 33328124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases.
    Lindgren Belal S; Sadik M; Kaboteh R; Enqvist O; Ulén J; Poulsen MH; Simonsen J; Høilund-Carlsen PF; Edenbrandt L; Trägårdh E
    Eur J Radiol; 2019 Apr; 113():89-95. PubMed ID: 30927965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural network algorithm for detection of erosions and ankylosis on CT of the sacroiliac joints: multicentre development and validation of diagnostic accuracy.
    Van Den Berghe T; Babin D; Chen M; Callens M; Brack D; Maes H; Lievens J; Lammens M; Van Sumere M; Morbée L; Hautekeete S; Schatteman S; Jacobs T; Thooft WJ; Herregods N; Huysse W; Jaremko JL; Lambert R; Maksymowych W; Laloo F; Baraliakos X; De Craemer AS; Carron P; Van den Bosch F; Elewaut D; Jans L
    Eur Radiol; 2023 Nov; 33(11):8310-8323. PubMed ID: 37219619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of frailty on 6-month outcome after traumatic brain injury: a multicentre cohort study with external validation.
    Galimberti S; Graziano F; Maas AIR; Isernia G; Lecky F; Jain S; Sun X; Gardner RC; Taylor SR; Markowitz AJ; Manley GT; Valsecchi MG; Bellelli G; Citerio G;
    Lancet Neurol; 2022 Feb; 21(2):153-162. PubMed ID: 35065038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic hemorrhage segmentation on head CT scan for traumatic brain injury using 3D deep learning model.
    Inkeaw P; Angkurawaranon S; Khumrin P; Inmutto N; Traisathit P; Chaijaruwanich J; Angkurawaranon C; Chitapanarux I
    Comput Biol Med; 2022 Jul; 146():105530. PubMed ID: 35460962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning-Based Detection and Classification of Bone Lesions on Staging Computed Tomography in Prostate Cancer: A Development Study.
    Belue MJ; Harmon SA; Yang D; An JY; Gaur S; Law YM; Turkbey E; Xu Z; Tetreault J; Lay NS; Yilmaz EC; Phelps TE; Simon B; Lindenberg L; Mena E; Pinto PA; Bagci U; Wood BJ; Citrin DE; Dahut WL; Madan RA; Gulley JL; Xu D; Choyke PL; Turkbey B
    Acad Radiol; 2024 Jun; 31(6):2424-2433. PubMed ID: 38262813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation.
    Weeda MM; Brouwer I; de Vos ML; de Vries MS; Barkhof F; Pouwels PJW; Vrenken H
    Neuroimage Clin; 2019; 24():102074. PubMed ID: 31734527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convolutional Neural Network for Automated FLAIR Lesion Segmentation on Clinical Brain MR Imaging.
    Duong MT; Rudie JD; Wang J; Xie L; Mohan S; Gee JC; Rauschecker AM
    AJNR Am J Neuroradiol; 2019 Aug; 40(8):1282-1290. PubMed ID: 31345943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-Learning-Based Whole-Lung and Lung-Lesion Quantification Despite Inconsistent Ground Truth: Application to Computerized Tomography in SARS-CoV-2 Nonhuman Primate Models.
    Reza SMS; Chu WT; Homayounieh F; Blain M; Firouzabadi FD; Anari PY; Lee JH; Worwa G; Finch CL; Kuhn JH; Malayeri A; Crozier I; Wood BJ; Feuerstein IM; Solomon J
    Acad Radiol; 2023 Sep; 30(9):2037-2045. PubMed ID: 36966070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study.
    Steyerberg EW; Wiegers E; Sewalt C; Buki A; Citerio G; De Keyser V; Ercole A; Kunzmann K; Lanyon L; Lecky F; Lingsma H; Manley G; Nelson D; Peul W; Stocchetti N; von Steinbüchel N; Vande Vyvere T; Verheyden J; Wilson L; Maas AIR; Menon DK;
    Lancet Neurol; 2019 Oct; 18(10):923-934. PubMed ID: 31526754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier.
    Wolterink JM; van Hamersvelt RW; Viergever MA; Leiner T; Išgum I
    Med Image Anal; 2019 Jan; 51():46-60. PubMed ID: 30388501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning for automatic bowel-obstruction identification on abdominal CT.
    Vanderbecq Q; Gelard M; Pesquet JC; Wagner M; Arrive L; Zins M; Chouzenoux E
    Eur Radiol; 2024 Sep; 34(9):5842-5853. PubMed ID: 38388719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of techniques to improve a deep learning algorithm for the automatic detection of intracranial haemorrhage on CT head imaging.
    Yeo M; Tahayori B; Kok HK; Maingard J; Kutaiba N; Russell J; Thijs V; Jhamb A; Chandra RV; Brooks M; Barras CD; Asadi H
    Eur Radiol Exp; 2023 Apr; 7(1):17. PubMed ID: 37032417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer vision applied to dual-energy computed tomography images for precise calcinosis cutis quantification in patients with systemic sclerosis.
    Chandrasekaran AC; Fu Z; Kraniski R; Wilson FP; Teaw S; Cheng M; Wang A; Ren S; Omar IM; Hinchcliff ME
    Arthritis Res Ther; 2021 Jan; 23(1):6. PubMed ID: 33407814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network.
    Ye H; Gao F; Yin Y; Guo D; Zhao P; Lu Y; Wang X; Bai J; Cao K; Song Q; Zhang H; Chen W; Guo X; Xia J
    Eur Radiol; 2019 Nov; 29(11):6191-6201. PubMed ID: 31041565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.