These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33328125)

  • 21. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study.
    Kickingereder P; Isensee F; Tursunova I; Petersen J; Neuberger U; Bonekamp D; Brugnara G; Schell M; Kessler T; Foltyn M; Harting I; Sahm F; Prager M; Nowosielski M; Wick A; Nolden M; Radbruch A; Debus J; Schlemmer HP; Heiland S; Platten M; von Deimling A; van den Bent MJ; Gorlia T; Wick W; Bendszus M; Maier-Hein KH
    Lancet Oncol; 2019 May; 20(5):728-740. PubMed ID: 30952559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a Multimodal Machine Learning-Based Prognostication Model for Traumatic Brain Injury Using Clinical Data and Computed Tomography Scans: A CENTER-TBI and CINTER-TBI Study.
    Hibi A; Cusimano MD; Bilbily A; Krishnan RG; Tyrrell PN
    J Neurotrauma; 2024 Jun; 41(11-12):1323-1336. PubMed ID: 38279813
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic Quantification of Computed Tomography Features in Acute Traumatic Brain Injury.
    Jain S; Vyvere TV; Terzopoulos V; Sima DM; Roura E; Maas A; Wilms G; Verheyden J
    J Neurotrauma; 2019 Jun; 36(11):1794-1803. PubMed ID: 30648469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms.
    Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU
    Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship of admission blood proteomic biomarkers levels to lesion type and lesion burden in traumatic brain injury: A CENTER-TBI study.
    Whitehouse DP; Monteiro M; Czeiter E; Vyvere TV; Valerio F; Ye Z; Amrein K; Kamnitsas K; Xu H; Yang Z; Verheyden J; Das T; Kornaropoulos EN; Steyerberg E; Maas AIR; Wang KKW; Büki A; Glocker B; Menon DK; Newcombe VFJ;
    EBioMedicine; 2022 Jan; 75():103777. PubMed ID: 34959133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accuracy and time efficiency of a novel deep learning algorithm for Intracranial Hemorrhage detection in CT Scans.
    D'Angelo T; Bucolo GM; Kamareddine T; Yel I; Koch V; Gruenewald LD; Martin S; Alizadeh LS; Mazziotti S; Blandino A; Vogl TJ; Booz C
    Radiol Med; 2024 Oct; 129(10):1499-1506. PubMed ID: 39123064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT.
    Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J
    Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning from dual-energy information for whole-heart segmentation in dual-energy and single-energy non-contrast-enhanced cardiac CT.
    Bruns S; Wolterink JM; Takx RAP; van Hamersvelt RW; Suchá D; Viergever MA; Leiner T; Išgum I
    Med Phys; 2020 Oct; 47(10):5048-5060. PubMed ID: 32786071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Validation of a deep learning model for traumatic brain injury detection and NIRIS grading on non-contrast CT: a multi-reader study with promising results and opportunities for improvement.
    Jiang B; Ozkara BB; Creeden S; Zhu G; Ding VY; Chen H; Lanzman B; Wolman D; Shams S; Trinh A; Li Y; Khalaf A; Parker JJ; Halpern CH; Wintermark M
    Neuroradiology; 2023 Nov; 65(11):1605-1617. PubMed ID: 37269414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study.
    Chilamkurthy S; Ghosh R; Tanamala S; Biviji M; Campeau NG; Venugopal VK; Mahajan V; Rao P; Warier P
    Lancet; 2018 Dec; 392(10162):2388-2396. PubMed ID: 30318264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT.
    Arab A; Chinda B; Medvedev G; Siu W; Guo H; Gu T; Moreno S; Hamarneh G; Ester M; Song X
    Sci Rep; 2020 Nov; 10(1):19389. PubMed ID: 33168895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lung Segmentation on HRCT and Volumetric CT for Diffuse Interstitial Lung Disease Using Deep Convolutional Neural Networks.
    Park B; Park H; Lee SM; Seo JB; Kim N
    J Digit Imaging; 2019 Dec; 32(6):1019-1026. PubMed ID: 31396776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation.
    Essa E; Aldesouky D; Hussein SE; Rashad MZ
    Med Biol Eng Comput; 2020 Sep; 58(9):2161-2175. PubMed ID: 32681214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward an Expert Level of Lung Cancer Detection and Classification Using a Deep Convolutional Neural Network.
    Zhang C; Sun X; Dang K; Li K; Guo XW; Chang J; Yu ZQ; Huang FY; Wu YS; Liang Z; Liu ZY; Zhang XG; Gao XL; Huang SH; Qin J; Feng WN; Zhou T; Zhang YB; Fang WJ; Zhao MF; Yang XN; Zhou Q; Wu YL; Zhong WZ
    Oncologist; 2019 Sep; 24(9):1159-1165. PubMed ID: 30996009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated intracranial hemorrhage detection in traumatic brain injury using 3D CNN.
    Agrawal D; Poonamallee L; Joshi S; Bahel V
    J Neurosci Rural Pract; 2023; 14(4):615-621. PubMed ID: 38059235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Learning Approach for Assessment of Bladder Cancer Treatment Response.
    Wu E; Hadjiiski LM; Samala RK; Chan HP; Cha KH; Richter C; Cohan RH; Caoili EM; Paramagul C; Alva A; Weizer AZ
    Tomography; 2019 Mar; 5(1):201-208. PubMed ID: 30854458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A quantitative analysis of the improvement provided by comprehensive annotation on CT lesion detection using deep learning.
    Ma J; Yoon JH; Lu L; Yang H; Guo P; Yang D; Li J; Shen J; Schwartz LH; Zhao B
    J Appl Clin Med Phys; 2024 Sep; 25(9):e14434. PubMed ID: 39078867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation.
    Cayot B; Milot L; Nempont O; Vlachomitrou AS; Langlois-Jacques C; Dumortier J; Boillot O; Arnaud K; Barten TRM; Drenth JPH; Valette PJ
    Eur Radiol; 2022 Jul; 32(7):4780-4790. PubMed ID: 35142898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks.
    Krüger J; Opfer R; Gessert N; Ostwaldt AC; Manogaran P; Kitzler HH; Schlaefer A; Schippling S
    Neuroimage Clin; 2020; 28():102445. PubMed ID: 33038667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Semantic Segmentation of Spontaneous Intracerebral Hemorrhage, Intraventricular Hemorrhage, and Associated Edema on CT Images Using Deep Learning.
    Kok YE; Pszczolkowski S; Law ZK; Ali A; Krishnan K; Bath PM; Sprigg N; Dineen RA; French AP
    Radiol Artif Intell; 2022 Nov; 4(6):e220096. PubMed ID: 36523645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.