BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33328464)

  • 21. Hydrogen Sulfide: A Potent Tool in Postharvest Fruit Biology and Possible Mechanism of Action.
    Ziogas V; Molassiotis A; Fotopoulos V; Tanou G
    Front Plant Sci; 2018; 9():1375. PubMed ID: 30283483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppression of
    Yin W; Yu X; Chen G; Tang B; Wang Y; Liao C; Zhang Y; Hu Z
    Front Plant Sci; 2018; 9():938. PubMed ID: 30022990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome analysis reveals delaying of the ripening and cell-wall degradation of kiwifruit by hydrogen sulfide.
    Lin X; Yang R; Dou Y; Zhang W; Du H; Zhu L; Chen J
    J Sci Food Agric; 2020 Mar; 100(5):2280-2287. PubMed ID: 31944323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis.
    Shi H; Ye T; Han N; Bian H; Liu X; Chan Z
    J Integr Plant Biol; 2015 Jul; 57(7):628-40. PubMed ID: 25329496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of a tomato mutant constructed with reverse genetics to study fruit ripening, a complex developmental process.
    Theologis A; Oeller PW; Wong LM; Rottmann WH; Gantz DM
    Dev Genet; 1993; 14(4):282-95. PubMed ID: 8222344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening.
    Gao Y; Wei W; Zhao X; Tan X; Fan Z; Zhang Y; Jing Y; Meng L; Zhu B; Zhu H; Chen J; Jiang CZ; Grierson D; Luo Y; Fu DQ
    Hortic Res; 2018; 5():75. PubMed ID: 30588320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants.
    Mukherjee S
    Nitric Oxide; 2019 Jan; 82():25-34. PubMed ID: 30465876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Hydrogen Sulfide on Sugar, Organic Acid, Carotenoid, and Polyphenol Level in Tomato Fruit.
    Zhang Y; Yun F; Man X; Huang D; Liao W
    Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840068
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Something smells bad to plant pathogens: Production of hydrogen sulfide in plants and its role in plant defence responses.
    Vojtovič D; Luhová L; Petřivalský M
    J Adv Res; 2021 Jan; 27():199-209. PubMed ID: 33318878
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Antioxid Redox Signal; 2023 Nov; 39(13-15):1024. PubMed ID: 37851542
    [No Abstract]   [Full Text] [Related]  

  • 31. Delaying Broccoli Floret Yellowing by Phytosulfokine α Application During Cold Storage.
    Aghdam MS; Alikhani-Koupaei M; Khademian R
    Front Nutr; 2021; 8():609217. PubMed ID: 33869261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The metabolic changes that effect fruit quality during tomato fruit ripening.
    Zhu F; Wen W; Cheng Y; Fernie AR
    Mol Hortic; 2022 Jan; 2(1):2. PubMed ID: 37789428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alternative transcription and feedback regulation suggest that SlIDI1 is involved in tomato carotenoid synthesis in a complex way.
    Zhou M; Deng L; Guo S; Yuan G; Li C; Li C
    Hortic Res; 2022 Jan; 9():. PubMed ID: 35031800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Editorial: Regulation of Fruit Ripening and Senescence.
    Figueroa CR; Jiang CZ; Torres CA; Fortes AM; Alkan N
    Front Plant Sci; 2021; 12():711458. PubMed ID: 34381486
    [No Abstract]   [Full Text] [Related]  

  • 35. Publisher Correction: The chloroplast-associated protein degradation pathway controls chromoplast development and fruit ripening in tomato.
    Ling Q; Sadali NM; Soufi Z; Zhou Y; Huang B; Zeng Y; Rodriguez-Concepcion M; Jarvis RP
    Nat Plants; 2021 Oct; 7(10):1433. PubMed ID: 34646008
    [No Abstract]   [Full Text] [Related]  

  • 36. Modification of fruit ripening by suppressing gene expression.
    Theologis A; Zarembinski TI; Oeller PW; Liang X; Abel S
    Plant Physiol; 1992 Oct; 100(2):549-51. PubMed ID: 16653026
    [No Abstract]   [Full Text] [Related]  

  • 37. Efficient Genome Editing in
    An Y; Geng Y; Yao J; Fu C; Lu M; Wang C; Du J
    Front Plant Sci; 2020; 11():593938. PubMed ID: 33329659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tomato protein phosphatase 2C influences the onset of fruit ripening and fruit glossiness.
    Liang B; Sun Y; Wang J; Zheng Y; Zhang W; Xu Y; Li Q; Leng P
    J Exp Bot; 2021 Mar; 72(7):2403-2418. PubMed ID: 33345282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. WUSCHEL in the shoot apical meristem: old player, new tricks.
    Lopes FL; Galvan-Ampudia C; Landrein B
    J Exp Bot; 2021 Feb; 72(5):1527-1535. PubMed ID: 33332559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. miRNA expression profiling and zeatin dynamic changes in a new model system of in vivo indirect regeneration of tomato.
    Cao H; Zhang X; Ruan Y; Zhang L; Cui Z; Li X; Jia B
    PLoS One; 2020; 15(12):e0237690. PubMed ID: 33332392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.