These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 33328508)
1. Temporal changes in reproductive success and optimal breeding decisions in a long-distance migratory bird. Reséndiz-Infante C; Gauthier G Sci Rep; 2020 Dec; 10(1):22067. PubMed ID: 33328508 [TBL] [Abstract][Full Text] [Related]
2. From individual to population level: Temperature and snow cover modulate fledging success through breeding phenology in greylag geese (Anser anser). Frigerio D; Sumasgutner P; Kotrschal K; Kleindorfer S; Hemetsberger J Sci Rep; 2021 Aug; 11(1):16100. PubMed ID: 34373490 [TBL] [Abstract][Full Text] [Related]
3. Trophic mismatch and its effects on the growth of young in an Arctic herbivore. Doiron M; Gauthier G; Lévesque E Glob Chang Biol; 2015 Dec; 21(12):4364-76. PubMed ID: 26235037 [TBL] [Abstract][Full Text] [Related]
4. Arctic Geese Tune Migration to a Warming Climate but Still Suffer from a Phenological Mismatch. Lameris TK; van der Jeugd HP; Eichhorn G; Dokter AM; Bouten W; Boom MP; Litvin KE; Ens BJ; Nolet BA Curr Biol; 2018 Aug; 28(15):2467-2473.e4. PubMed ID: 30033332 [TBL] [Abstract][Full Text] [Related]
5. Great tits lay increasingly smaller clutches than selected for: a study of climate- and density-related changes in reproductive traits. Ahola MP; Laaksonen T; Eeva T; Lehikoinen E J Anim Ecol; 2009 Nov; 78(6):1298-306. PubMed ID: 19682140 [TBL] [Abstract][Full Text] [Related]
6. Climate warming may affect the optimal timing of reproduction for migratory geese differently in the low and high Arctic. Lameris TK; de Jong ME; Boom MP; van der Jeugd HP; Litvin KE; Loonen MJJE; Nolet BA; Prop J Oecologia; 2019 Dec; 191(4):1003-1014. PubMed ID: 31624958 [TBL] [Abstract][Full Text] [Related]
7. Spring temperature, migration chronology, and nutrient allocation to eggs in three species of arctic-nesting geese: Implications for resilience to climate warming. Hupp JW; Ward DH; Soto DX; Hobson KA Glob Chang Biol; 2018 Nov; 24(11):5056-5071. PubMed ID: 30092605 [TBL] [Abstract][Full Text] [Related]
8. Body condition, migration, and timing of reproduction in snow geese: a test of the condition-dependent model of optimal clutch size. Bêty J; Gauthier G; Jean-François G Am Nat; 2003 Jul; 162(1):110-21. PubMed ID: 12856240 [TBL] [Abstract][Full Text] [Related]
9. Decadal declines in avian herbivore reproduction: density-dependent nutrition and phenological mismatch in the Arctic. Ross MV; Alisauskas RT; Douglas DC; Kellett DK Ecology; 2017 Jul; 98(7):1869-1883. PubMed ID: 28403519 [TBL] [Abstract][Full Text] [Related]
10. The relative influence of cross-seasonal and local weather effects on the breeding success of a migratory songbird. de Zwaan DR; Drake A; Camfield AF; MacDonald EC; Martin K J Anim Ecol; 2022 Jul; 91(7):1458-1470. PubMed ID: 35426953 [TBL] [Abstract][Full Text] [Related]
11. Changes in breeding phenology and population size of birds. Dunn PO; Møller AP J Anim Ecol; 2014 May; 83(3):729-39. PubMed ID: 24117440 [TBL] [Abstract][Full Text] [Related]
12. Earlier springs increase goose breeding propensity and nesting success at Arctic but not at temperate latitudes. Boom MP; Schreven KHT; Buitendijk NH; Moonen S; Nolet BA; Eichhorn G; van der Jeugd HP; Lameris TK J Anim Ecol; 2023 Dec; 92(12):2399-2411. PubMed ID: 37899661 [TBL] [Abstract][Full Text] [Related]
13. Pre-incubation feeding activities and energy budgets of Snow Geese: can food on the breeding grounds influence fecundity? Ganter B; Cooke F Oecologia; 1996 Apr; 106(2):153-165. PubMed ID: 28307639 [TBL] [Abstract][Full Text] [Related]
14. Spring temperatures influence selection on breeding date and the potential for phenological mismatch in a migratory bird. Bowers EK; Grindstaff JL; Soukup SS; Drilling NE; Eckerle KP; Sakaluk SK; Thompson CF Ecology; 2016 Oct; 97(10):2880-2891. PubMed ID: 27859132 [TBL] [Abstract][Full Text] [Related]
15. The effect of climate change on laying dates, clutch size and productivity of Eurasian Coots Fulica atra. Halupka L; Czyż B; Macias Dominguez CM Int J Biometeorol; 2020 Nov; 64(11):1857-1863. PubMed ID: 32940763 [TBL] [Abstract][Full Text] [Related]
16. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification. Lameris TK; Scholten I; Bauer S; Cobben MMP; Ens BJ; Nolet BA Glob Chang Biol; 2017 Oct; 23(10):4058-4067. PubMed ID: 28295932 [TBL] [Abstract][Full Text] [Related]
17. Intra-seasonal decline of clutch size in Lesser Snow Geese. Hamann J; Cooke F Oecologia; 1989 Apr; 79(1):83-90. PubMed ID: 28312816 [TBL] [Abstract][Full Text] [Related]
18. Climatic effects on breeding grounds are more important drivers of breeding phenology in migrant birds than carry-over effects from wintering grounds. Ockendon N; Leech D; Pearce-Higgins JW Biol Lett; 2013; 9(6):20130669. PubMed ID: 24196517 [TBL] [Abstract][Full Text] [Related]
19. Orchestration of avian reproductive effort: an integration of the ultimate and proximate bases for flexibility in clutch size, incubation behaviour, and yolk androgen deposition. Sockman KW; Sharp PJ; Schwabl H Biol Rev Camb Philos Soc; 2006 Nov; 81(4):629-66. PubMed ID: 17038202 [TBL] [Abstract][Full Text] [Related]
20. Reproductive success of a keystone herbivore is more variable and responsive to climate in habitats with lower resource diversity. Iles DT; Rockwell RF; Koons DN J Anim Ecol; 2018 Jul; 87(4):1182-1191. PubMed ID: 29676509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]