BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33328579)

  • 21. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering.
    Venkatesan J; Bhatnagar I; Kim SK
    Mar Drugs; 2014 Jan; 12(1):300-16. PubMed ID: 24441614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heparin dopant increases the electrical stability, cell adhesion, and growth of conducting polypyrrole/poly(L,L-lactide) composites.
    Meng S; Rouabhia M; Shi G; Zhang Z
    J Biomed Mater Res A; 2008 Nov; 87(2):332-44. PubMed ID: 18181107
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel fluffy conductive polypyrrole nano-layer coated PLLA fibrous scaffold for nerve tissue engineering.
    Jin L; Feng ZQ; Zhu ML; Wang T; Leach MK; Jiang Q
    J Biomed Nanotechnol; 2012 Oct; 8(5):779-85. PubMed ID: 22888748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioactivating electrically conducting polypyrrole with fibronectin and bovine serum albumin.
    Akkouch A; Shi G; Zhang Z; Rouabhia M
    J Biomed Mater Res A; 2010 Jan; 92(1):221-31. PubMed ID: 19172617
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conductive GelMA/alginate/polypyrrole/graphene hydrogel as a potential scaffold for cardiac tissue engineering; Physiochemical, mechanical, and biological evaluations.
    Kaviani S; Talebi A; Labbaf S; Karimzadeh F
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129276. PubMed ID: 38211921
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: effects of coating on electrical conductivity and neural cell growth.
    Sudwilai T; Ng JJ; Boonkrai C; Israsena N; Chuangchote S; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(12):1240-52. PubMed ID: 24933469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates.
    Hu Y; Ma S; Yang Z; Zhou W; Du Z; Huang J; Yi H; Wang C
    Colloids Surf B Biointerfaces; 2016 Apr; 140():382-391. PubMed ID: 26774574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A chemically polymerized electrically conducting composite of polypyrrole nanoparticles and polyurethane for tissue engineering.
    Broda CR; Lee JY; Sirivisoot S; Schmidt CE; Harrison BS
    J Biomed Mater Res A; 2011 Sep; 98(4):509-16. PubMed ID: 21681943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering.
    Shi D; Shen J; Zhang Z; Shi C; Chen M; Gu Y; Liu Y
    J Biomed Mater Res A; 2019 Aug; 107(8):1615-1627. PubMed ID: 30920134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and properties of polypyrrole/bacterial cellulose nanocomposites.
    Muller D; Rambo CR; Porto LM; Schreiner WH; Barra GM
    Carbohydr Polym; 2013 Apr; 94(1):655-62. PubMed ID: 23544587
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of poly(D,L-lactic acid) scaffolds using alginate particles.
    Yu G; Fan Y
    J Biomater Sci Polym Ed; 2008; 19(1):87-98. PubMed ID: 18177556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.
    Sharma C; Dinda AK; Potdar PD; Chou CF; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():416-427. PubMed ID: 27127072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alginate dependent changes of physical properties in 3D bioprinted cell-laden porous scaffolds affect cell viability and cell morphology.
    Zhang J; Wehrle E; Vetsch JR; Paul GR; Rubert M; Müller R
    Biomed Mater; 2019 Sep; 14(6):065009. PubMed ID: 31426033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anisotropic Chitosan Scaffolds Generated by Electrostatic Flocking Combined with Alginate Hydrogel Support Chondrogenic Differentiation.
    Gossla E; Bernhardt A; Tonndorf R; Aibibu D; Cherif C; Gelinsky M
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biocompatibility of biomimetic multilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue.
    Algul D; Sipahi H; Aydin A; Kelleci F; Ozdatli S; Yener FG
    Int J Biol Macromol; 2015 Aug; 79():363-9. PubMed ID: 25982954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering.
    Shaltooki M; Dini G; Mehdikhani M
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110138. PubMed ID: 31546409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.
    Amir Afshar H; Ghaee A
    Carbohydr Polym; 2016 Oct; 151():1120-1131. PubMed ID: 27474663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assembly of polypyrrole/chitosan composite hydrogels.
    Huang H; Wu J; Lin X; Li L; Shang S; Yuen MC; Yan G
    Carbohydr Polym; 2013 Jun; 95(1):72-6. PubMed ID: 23618241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of graphene oxide and nano-bioglass based scaffold for bone tissue regeneration.
    Kumari S; Singh D; Srivastava P; Singh BN; Mishra A
    Biomed Mater; 2022 Sep; 17(6):. PubMed ID: 36113451
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuronal cells' behavior on polypyrrole coated bacterial nanocellulose three-dimensional (3D) scaffolds.
    Muller D; Silva JP; Rambo CR; Barra GM; Dourado F; Gama FM
    J Biomater Sci Polym Ed; 2013; 24(11):1368-77. PubMed ID: 23796037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.