These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 33328604)
1. Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer. Dong B; Miao J; Wang Y; Luo W; Ji Z; Lai H; Zhang M; Cheng X; Wang J; Fang Y; Zhu HH; Chua CW; Fan L; Zhu Y; Pan J; Wang J; Xue W; Gao WQ Commun Biol; 2020 Dec; 3(1):778. PubMed ID: 33328604 [TBL] [Abstract][Full Text] [Related]
2. The deregulation of miR-17/CCND1 axis during neuroendocrine transdifferentiation of LNCaP prostate cancer cells. Dankert JT; Wiesehöfer M; Czyrnik ED; Singer BB; von Ostau N; Wennemuth G PLoS One; 2018; 13(7):e0200472. PubMed ID: 30001402 [TBL] [Abstract][Full Text] [Related]
4. Gene expression signatures of neuroendocrine prostate cancer and primary small cell prostatic carcinoma. Tsai HK; Lehrer J; Alshalalfa M; Erho N; Davicioni E; Lotan TL BMC Cancer; 2017 Nov; 17(1):759. PubMed ID: 29132337 [TBL] [Abstract][Full Text] [Related]
5. Interleukin-1β promotes skeletal colonization and progression of metastatic prostate cancer cells with neuroendocrine features. Liu Q; Russell MR; Shahriari K; Jernigan DL; Lioni MI; Garcia FU; Fatatis A Cancer Res; 2013 Jun; 73(11):3297-305. PubMed ID: 23536554 [TBL] [Abstract][Full Text] [Related]
6. [Neuroendocrine differentiation in prostate cancer]. Wu CY; Na YQ; Yao JL; di Sant'Agnese PA; Huang JT Zhonghua Bing Li Xue Za Zhi; 2006 Sep; 35(9):565-7. PubMed ID: 17134555 [No Abstract] [Full Text] [Related]
7. A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network. Lee AR; Gan Y; Tang Y; Dong X EBioMedicine; 2018 Sep; 35():167-177. PubMed ID: 30100395 [TBL] [Abstract][Full Text] [Related]
8. Neuroendocrine differentiation of prostate cancer. Li Z; Chen CJ; Wang JK; Hsia E; Li W; Squires J; Sun Y; Huang J Asian J Androl; 2013 May; 15(3):328-32. PubMed ID: 23503426 [No Abstract] [Full Text] [Related]
9. Isoform 1 of TPD52 (PC-1) promotes neuroendocrine transdifferentiation in prostate cancer cells. Moritz T; Venz S; Junker H; Kreuz S; Walther R; Zimmermann U Tumour Biol; 2016 Aug; 37(8):10435-46. PubMed ID: 26846108 [TBL] [Abstract][Full Text] [Related]
11. Neuroendocrine Differentiation in Prostate Cancer: Emerging Biology, Models, and Therapies. Puca L; Vlachostergios PJ; Beltran H Cold Spring Harb Perspect Med; 2019 Feb; 9(2):. PubMed ID: 29844220 [TBL] [Abstract][Full Text] [Related]
12. Neuroendocrine transdifferentiation of prostate carcinoma cells and its prognostic significance. Marcu M; Radu E; Sajin M Rom J Morphol Embryol; 2010; 51(1):7-12. PubMed ID: 20191113 [TBL] [Abstract][Full Text] [Related]
13. Gelsolin Governs the Neuroendocrine Transdifferentiation of Prostate Cancer Cells and Suppresses the Apoptotic Machinery. Oelrich F; Junker H; Stope MB; Erb HHH; Walther R; Venz S; Zimmermann U Anticancer Res; 2021 Aug; 41(8):3717-3729. PubMed ID: 34281830 [TBL] [Abstract][Full Text] [Related]
14. Integrated genome and transcriptome sequencing identifies a novel form of hybrid and aggressive prostate cancer. Wu C; Wyatt AW; Lapuk AV; McPherson A; McConeghy BJ; Bell RH; Anderson S; Haegert A; Brahmbhatt S; Shukin R; Mo F; Li E; Fazli L; Hurtado-Coll A; Jones EC; Butterfield YS; Hach F; Hormozdiari F; Hajirasouliha I; Boutros PC; Bristow RG; Jones SJ; Hirst M; Marra MA; Maher CA; Chinnaiyan AM; Sahinalp SC; Gleave ME; Volik SV; Collins CC J Pathol; 2012 May; 227(1):53-61. PubMed ID: 22294438 [TBL] [Abstract][Full Text] [Related]
15. Neuroendocrine tumors of the prostate. Fine SW Mod Pathol; 2018 Jan; 31(S1):S122-132. PubMed ID: 29297494 [TBL] [Abstract][Full Text] [Related]
16. De novo neuroendocrine transdifferentiation in primary prostate cancer-a phenotype associated with advanced clinico-pathologic features and aggressive outcome. Abdulfatah E; Reichert ZR; Davenport MS; Chinnaiyan AM; Dadhania V; Wang X; Mannan R; Kunju LP; Hollenbeck BK; Montgomery JS; Kaffenberger SD; Morgan TM; Alva AS; Palapattu GS; Vaishampayan UN; Alumkal JJ; Spratt DE; Udager AM; Mehra R Med Oncol; 2021 Feb; 38(3):26. PubMed ID: 33586037 [TBL] [Abstract][Full Text] [Related]
17. A basal stem cell signature identifies aggressive prostate cancer phenotypes. Smith BA; Sokolov A; Uzunangelov V; Baertsch R; Newton Y; Graim K; Mathis C; Cheng D; Stuart JM; Witte ON Proc Natl Acad Sci U S A; 2015 Nov; 112(47):E6544-52. PubMed ID: 26460041 [TBL] [Abstract][Full Text] [Related]
18. FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer. Han M; Li F; Zhang Y; Dai P; He J; Li Y; Zhu Y; Zheng J; Huang H; Bai F; Gao D Cancer Cell; 2022 Nov; 40(11):1306-1323.e8. PubMed ID: 36332622 [TBL] [Abstract][Full Text] [Related]
19. Targeting Key Players of Neuroendocrine Differentiation in Prostate Cancer. Zamora I; Freeman MR; Encío IJ; Rotinen M Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37761978 [TBL] [Abstract][Full Text] [Related]
20. Context dependent regulatory patterns of the androgen receptor and androgen receptor target genes. Olsen JR; Azeem W; Hellem MR; Marvyin K; Hua Y; Qu Y; Li L; Lin B; Ke X; Øyan AM; Kalland K BMC Cancer; 2016 Jul; 16():377. PubMed ID: 27378372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]