These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 33328604)
21. Bhagirath D; Yang TL; Tabatabai ZL; Majid S; Dahiya R; Tanaka Y; Saini S Clin Cancer Res; 2019 Nov; 25(21):6532-6545. PubMed ID: 31371344 [TBL] [Abstract][Full Text] [Related]
22. Conditionally ablated Pten in prostate basal cells promotes basal-to-luminal differentiation and causes invasive prostate cancer in mice. Lu TL; Huang YF; You LR; Chao NC; Su FY; Chang JL; Chen CM Am J Pathol; 2013 Mar; 182(3):975-91. PubMed ID: 23313138 [TBL] [Abstract][Full Text] [Related]
23. TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation. Mounir Z; Lin F; Lin VG; Korn JM; Yu Y; Valdez R; Aina OH; Buchwalter G; Jaffe AB; Korpal M; Zhu P; Brown M; Cardiff RD; Rocnik JL; Yang Y; Pagliarini R Oncogene; 2015 Jul; 34(29):3815-25. PubMed ID: 25263440 [TBL] [Abstract][Full Text] [Related]
24. Characterization of transcriptomic signature of primary prostate cancer analogous to prostatic small cell neuroendocrine carcinoma. Alshalalfa M; Liu Y; Wyatt AW; Gibb EA; Tsai HK; Erho N; Lehrer J; Takhar M; Ramnarine VR; Collins CC; Den RB; Schaeffer EM; Davicioni E; Lotan TL; Bismar TA Int J Cancer; 2019 Dec; 145(12):3453-3461. PubMed ID: 31125117 [TBL] [Abstract][Full Text] [Related]
25. FOXA1 inhibits prostate cancer neuroendocrine differentiation. Kim J; Jin H; Zhao JC; Yang YA; Li Y; Yang X; Dong X; Yu J Oncogene; 2017 Jul; 36(28):4072-4080. PubMed ID: 28319070 [TBL] [Abstract][Full Text] [Related]
26. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells. Labrecque MP; Takhar MK; Nason R; Santacruz S; Tam KJ; Massah S; Haegert A; Bell RH; Altamirano-Dimas M; Collins CC; Lee FJ; Prefontaine GG; Cox ME; Beischlag TV Oncotarget; 2016 Apr; 7(17):24284-302. PubMed ID: 27015368 [TBL] [Abstract][Full Text] [Related]
27. Epigenetic regulation of p63 blocks squamous-to-neuroendocrine transdifferentiation in esophageal development and malignancy. Zhang Y; Karagiannis D; Liu H; Lin M; Fang Y; Jiang M; Chen X; Suresh S; Huang H; She J; Shi F; Liu J; Luo D; Angel JC; Lin G; Yang P; El-Rifai W; Zaika A; Oro AE; Liu K; Rustgi AK; Wang TC; Lu C; Que J Sci Adv; 2024 Oct; 10(41):eadq0479. PubMed ID: 39383220 [TBL] [Abstract][Full Text] [Related]
29. Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes. Pascal LE; Vêncio RZ; Page LS; Liebeskind ES; Shadle CP; Troisch P; Marzolf B; True LD; Hood LE; Liu AY BMC Cancer; 2009 Dec; 9():452. PubMed ID: 20021671 [TBL] [Abstract][Full Text] [Related]
30. Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells. Uysal-Onganer P; Kawano Y; Caro M; Walker MM; Diez S; Darrington RS; Waxman J; Kypta RM Mol Cancer; 2010 Mar; 9():55. PubMed ID: 20219091 [TBL] [Abstract][Full Text] [Related]
31. Alternative RNA splicing of the MEAF6 gene facilitates neuroendocrine prostate cancer progression. Lee AR; Li Y; Xie N; Gleave ME; Cox ME; Collins CC; Dong X Oncotarget; 2017 Apr; 8(17):27966-27975. PubMed ID: 28427194 [TBL] [Abstract][Full Text] [Related]
32. Neuroendocrine cells of prostate cancer: biologic functions and molecular mechanisms. Huang YH; Zhang YQ; Huang JT Asian J Androl; 2019; 21(3):291-295. PubMed ID: 30924452 [TBL] [Abstract][Full Text] [Related]
33. Androgen deprivation modulates gene expression profile along prostate cancer progression. Volante M; Tota D; Giorcelli J; Bollito E; Napoli F; Vatrano S; Buttigliero C; Molinaro L; Gontero P; Porpiglia F; Tucci M; Papotti M; Berruti A; Rapa I Hum Pathol; 2016 Oct; 56():81-8. PubMed ID: 27342909 [TBL] [Abstract][Full Text] [Related]
34. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition. Coppola V; Musumeci M; Patrizii M; Cannistraci A; Addario A; Maugeri-Saccà M; Biffoni M; Francescangeli F; Cordenonsi M; Piccolo S; Memeo L; Pagliuca A; Muto G; Zeuner A; De Maria R; Bonci D Oncogene; 2013 Apr; 32(14):1843-53. PubMed ID: 22614007 [TBL] [Abstract][Full Text] [Related]
35. Selective Actionable and Druggable Protein Kinases Drive the Progression of Neuroendocrine Prostate Cancer. Lu C; Qie Y; Liu S; Wu C; Zhang Z; Liu R; Yang K; Hu H; Xu Y DNA Cell Biol; 2018 Sep; 37(9):758-766. PubMed ID: 29969286 [TBL] [Abstract][Full Text] [Related]
36. Proteogenomic Characterization of Patient-Derived Xenografts Highlights the Role of REST in Neuroendocrine Differentiation of Castration-Resistant Prostate Cancer. Flores-Morales A; Bergmann TB; Lavallee C; Batth TS; Lin D; Lerdrup M; Friis S; Bartels A; Kristensen G; Krzyzanowska A; Xue H; Fazli L; Hansen KH; Røder MA; Brasso K; Moreira JM; Bjartell A; Wang Y; Olsen JV; Collins CC; Iglesias-Gato D Clin Cancer Res; 2019 Jan; 25(2):595-608. PubMed ID: 30274982 [TBL] [Abstract][Full Text] [Related]
37. Neuroendocrine Tumors of the Prostate: Emerging Insights from Molecular Data and Updates to the 2016 World Health Organization Classification. Priemer DS; Montironi R; Wang L; Williamson SR; Lopez-Beltran A; Cheng L Endocr Pathol; 2016 Jun; 27(2):123-35. PubMed ID: 26885643 [TBL] [Abstract][Full Text] [Related]
38. Beta-adrenergic signaling on neuroendocrine differentiation, angiogenesis, and metastasis in prostate cancer progression. Zhao Y; Li W Asian J Androl; 2019; 21(3):253-259. PubMed ID: 29848834 [TBL] [Abstract][Full Text] [Related]
39. [Does neuroendocrine differentiation have prognostic value in prostate core needle biopsies?]. Jaskulski J; Gołabek T; Kopczyński J; Orłowsk P; Bukowczan J; Dudek P; Chłosta P Przegl Lek; 2013; 70(11):933-5. PubMed ID: 24697032 [TBL] [Abstract][Full Text] [Related]
40. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling. Lin TP; Chang YT; Lee SY; Campbell M; Wang TC; Shen SH; Chung HJ; Chang YH; Chiu AW; Pan CC; Lin CH; Chu CY; Kung HJ; Cheng CY; Chang PC Oncotarget; 2016 May; 7(18):26137-51. PubMed ID: 27034167 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]