These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 33328640)

  • 1. Maximizing US nitrate removal through wetland protection and restoration.
    Cheng FY; Van Meter KJ; Byrnes DK; Basu NB
    Nature; 2020 Dec; 588(7839):625-630. PubMed ID: 33328640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using ecotechnology to address water quality and wetland habitat loss problems in the Mississippi basin: a hierarchical approach.
    Day JW; Yañéz Arancibia A; Mitsch WJ; Lara-Dominguez AL; Day JN; Ko JY; Lane R; Lindsey J; Lomeli DZ
    Biotechnol Adv; 2003 Dec; 22(1-2):135-59. PubMed ID: 14623048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. River Basin Simulations Reveal Wide-Ranging Wetland-Mediated Nitrate Reductions.
    Evenson GR; Golden HE; Christensen JR; Lane CR; Kalcic MM; Rajib A; Wu Q; Mahoney DT; White E; D'Amico E
    Environ Sci Technol; 2023 Jul; 57(26):9822-9831. PubMed ID: 37345945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spring nitrate flux in the Mississippi River Basin: a landscape model with conservation applications.
    Booth MS; Campbell C
    Environ Sci Technol; 2007 Aug; 41(15):5410-8. PubMed ID: 17822110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forward-looking farmers owning multiple potential wetland restoration sites: implications for efficient restoration.
    Schroder Kushch S; Lang Z; Rabotyagov S
    Environ Manage; 2018 Apr; 61(4):577-596. PubMed ID: 29460238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building a potential wetland restoration indicator for the contiguous United States.
    Horvath EK; Christensen JR; Mehaffey MH; Neale AC
    Ecol Indic; 2017; 83():462-473. PubMed ID: 29706804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. National-Level Wetland Policy Specificity and Goals Vary According to Political and Economic Indicators.
    Peimer AW; Krzywicka AE; Cohen DB; Van den Bosch K; Buxton VL; Stevenson NA; Matthews JW
    Environ Manage; 2017 Jan; 59(1):141-153. PubMed ID: 27624708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hidden Loss of Wetlands in China.
    Xu W; Fan X; Ma J; Pimm SL; Kong L; Zeng Y; Li X; Xiao Y; Zheng H; Liu J; Wu B; An L; Zhang L; Wang X; Ouyang Z
    Curr Biol; 2019 Sep; 29(18):3065-3071.e2. PubMed ID: 31474534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examining water quality effects of riparian wetland loss and restoration scenarios in a southern ontario watershed.
    Yang W; Liu Y; Ou C; Gabor S
    J Environ Manage; 2016 Jun; 174():26-34. PubMed ID: 26989942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mangrove and Freshwater Wetland Conservation Through Carbon Offsets: A Cost-Benefit Analysis for Establishing Environmental Policies.
    Vázquez-González C; Moreno-Casasola P; Hernández ME; Campos A; Espejel I; Fermán-Almada JL
    Environ Manage; 2017 Feb; 59(2):274-290. PubMed ID: 27848002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating objectives and scales for planning and implementing wetland restoration and creation in agricultural landscapes.
    Moreno-Mateos D; Comin FA
    J Environ Manage; 2010 Nov; 91(11):2087-95. PubMed ID: 20580153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emergy-based evaluation of system sustainability and ecosystem value of a large-scale constructed wetland in North China.
    Zhang Y; Liu J; Zhang J; Wang R
    Environ Monit Assess; 2013 Jul; 185(7):5595-609. PubMed ID: 23108713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Main Drivers of Wetland Changes in the Beijing-Tianjin-Hebei Region.
    Zhang L; Zhen Q; Cheng M; Ouyang Z
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31340479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fuzzy quality index for the environmental assessment of a restored wetland.
    Giusti E; Marsili-Libelli S; Mattioli S
    Water Sci Technol; 2011; 63(9):2061-70. PubMed ID: 21902050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial optimization of watershed management practices for nitrogen load reduction using a modeling-optimization framework.
    Yang G; Best EPH
    J Environ Manage; 2015 Sep; 161():252-260. PubMed ID: 26188990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Riparian wetland rehabilitation and beaver re-colonization impacts on hydrological processes and water quality in a lowland agricultural catchment.
    Smith A; Tetzlaff D; Gelbrecht J; Kleine L; Soulsby C
    Sci Total Environ; 2020 Jan; 699():134302. PubMed ID: 31522046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness assessment of China's coastal wetland ecological restoration: A meta-analysis.
    Liu L; Lin B; Fang Q; Jiang X
    Sci Total Environ; 2024 Jul; 934():173336. PubMed ID: 38763186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutrient Removal Potential of Headwater Wetlands in Coastal Plains of Alabama, USA.
    Isik S; Haas H; Kalin L; Hantush MM; Nietch C
    Water (Basel); 2023 Jul; 15(15):1-22. PubMed ID: 37840575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Fragmentation process of wetland landscape in watersheds of Sanjiang Plain, China].
    Liu H; Lü X; Zhang S; Yang Q
    Ying Yong Sheng Tai Xue Bao; 2005 Feb; 16(2):289-95. PubMed ID: 15852925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Priority conservation pattern of wetlands in the Yellow River basin based on systematic conservation planning.].
    Guo Y; Liang C; Li XW
    Ying Yong Sheng Tai Xue Bao; 2018 Sep; 29(9):3024-3032. PubMed ID: 30411579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.