These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33328945)

  • 21. Theory of input spike auto- and cross-correlations and their effect on the response of spiking neurons.
    Moreno-Bote R; Renart A; Parga N
    Neural Comput; 2008 Jul; 20(7):1651-705. PubMed ID: 18254697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers.
    Peterson AJ; Irvine DR; Heil P
    J Neurosci; 2014 Nov; 34(45):15097-109. PubMed ID: 25378173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiscale analysis of neural spike trains.
    Ramezan R; Marriott P; Chenouri S
    Stat Med; 2014 Jan; 33(2):238-56. PubMed ID: 23996238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of Fano factor in inorganic scintillators.
    Bora V; Barrett HH; Fastje D; Clarkson E; Furenlid L; Bousselham A; Shah KS; Glodo J
    Nucl Instrum Methods Phys Res A; 2016 Jan; 805():72-86. PubMed ID: 26644631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the Spike Train Variability Characterized by Variance-to-Mean Power Relationship.
    Koyama S
    Neural Comput; 2015 Jul; 27(7):1530-48. PubMed ID: 25973546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A reproducing kernel Hilbert space framework for spike train signal processing.
    Paiva AR; Park I; Príncipe JC
    Neural Comput; 2009 Feb; 21(2):424-49. PubMed ID: 19431265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of the Fano Factor on Position and Energy Estimation in Scintillation Detectors.
    Bora V; Barrett HH; Jha AK; Clarkson E
    IEEE Trans Nucl Sci; 2015 Feb; 62(1):42-56. PubMed ID: 26523069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dethroning the Fano Factor: A Flexible, Model-Based Approach to Partitioning Neural Variability.
    Charles AS; Park M; Weller JP; Horwitz GD; Pillow JW
    Neural Comput; 2018 Apr; 30(4):1012-1045. PubMed ID: 29381442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Attractor reliability reveals deterministic structure in neuronal spike trains.
    Tiesinga PH; Fellous JM; Sejnowski TJ
    Neural Comput; 2002 Jul; 14(7):1629-50. PubMed ID: 12079549
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling stimulus-dependent variability improves decoding of population neural responses.
    Ghanbari A; Lee CM; Read HL; Stevenson IH
    J Neural Eng; 2019 Oct; 16(6):066018. PubMed ID: 31404915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The impact of spike timing variability on the signal-encoding performance of neural spiking models.
    Manwani A; Steinmetz PN; Koch C
    Neural Comput; 2002 Feb; 14(2):347-67. PubMed ID: 11802916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Spike Train Distance Robust to Firing Rate Changes Based on the Earth Mover's Distance.
    Sihn D; Kim SP
    Front Comput Neurosci; 2019; 13():82. PubMed ID: 31920607
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Which spike train distance is most suitable for distinguishing rate and temporal coding?
    Satuvuori E; Kreuz T
    J Neurosci Methods; 2018 Apr; 299():22-33. PubMed ID: 29462713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains.
    Perkel DH; Gerstein GL; Moore GP
    Biophys J; 1967 Jul; 7(4):419-40. PubMed ID: 4292792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Serial Spike Time Correlations Affect Probability Distribution of Joint Spike Events.
    Shahi M; van Vreeswijk C; Pipa G
    Front Comput Neurosci; 2016; 10():139. PubMed ID: 28066225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local shuffling of spike trains boosts the accuracy of spike train spectral analysis.
    Rivlin-Etzion M; Ritov Y; Heimer G; Bergman H; Bar-Gad I
    J Neurophysiol; 2006 May; 95(5):3245-56. PubMed ID: 16407432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains.
    Cofré R; Maldonado C
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Mathematical model of bursting spike train and its spectrum features].
    Zhang D; Ding H; Ye D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec; 27(6):1353-9. PubMed ID: 21374994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiscale spike train variability in primary electrosensory afferents.
    Nelson ME
    J Physiol Paris; 2002; 96(5-6):507-16. PubMed ID: 14692498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measuring spike timing distance in the Hindmarsh-Rose neurons.
    Zhu J; Liu X
    Cogn Neurodyn; 2018 Apr; 12(2):225-234. PubMed ID: 29564030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.