These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 33329252)

  • 1. Learning My Way: A Pilot Study of Navigation Skills in Cerebral Palsy in Immersive Virtual Reality.
    Biffi E; Gagliardi C; Maghini C; Genova C; Panzeri D; Redaelli DF; Turconi AC
    Front Psychol; 2020; 11():591296. PubMed ID: 33329252
    [No Abstract]   [Full Text] [Related]  

  • 2. Could an Immersive Virtual Reality Training Improve Navigation Skills in Children with Cerebral Palsy? A Pilot Controlled Study.
    Nossa R; Gagliardi C; Panzeri D; Diella E; Maghini C; Genova C; Turconi AC; Biffi E
    J Clin Med; 2022 Oct; 11(20):. PubMed ID: 36294467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Variability During Motor Learning of a New Balance Task in a Non-immersive Virtual Environment in Children With Hemiplegic Cerebral Palsy and Typically Developing Peers.
    Cheng M; Anderson M; Levac DE
    Front Neurol; 2021; 12():623200. PubMed ID: 33790848
    [No Abstract]   [Full Text] [Related]  

  • 4. Sequence memory skills in Spastic Bilateral Cerebral Palsy are age independent as in normally developing children.
    Gagliardi C; Tavano A; Turconi AC; Borgatti R
    Disabil Rehabil; 2013 Mar; 35(6):506-12. PubMed ID: 22897566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing spatial navigation skills in mild cognitive impairment patients: a usability study of a new version of ANTaging software.
    Stramba-Badiale C; Tuena C; Goulene KM; Cipresso P; Morelli S; Rossi M; D'Avenio G; Stramba-Badiale M; Riva G
    Front Hum Neurosci; 2023; 17():1310375. PubMed ID: 38259329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Critical Review of Spatial Abilities in Down and Williams Syndromes: Not All Space Is Created Equal.
    Banta Lavenex P; Lavenex P
    Front Psychiatry; 2021; 12():669320. PubMed ID: 34122185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immersive Virtual Reality to Improve Walking Abilities in Cerebral Palsy: A Pilot Study.
    Gagliardi C; Turconi AC; Biffi E; Maghini C; Marelli A; Cesareo A; Diella E; Panzeri D
    Ann Biomed Eng; 2018 Sep; 46(9):1376-1384. PubMed ID: 29704186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting allocentric and egocentric navigation deficits in patients with schizophrenia and bipolar disorder using virtual reality.
    Mohammadi A; Hesami E; Kargar M; Shams J
    Neuropsychol Rehabil; 2018 Apr; 28(3):398-415. PubMed ID: 28880126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial navigation from same and different directions: The role of executive functions, memory and attention in adults with autism spectrum disorder.
    Ring M; Gaigg SB; de Condappa O; Wiener JM; Bowler DM
    Autism Res; 2018 May; 11(5):798-810. PubMed ID: 29405653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing Navigation in Real Space: Contributions to Understanding the Physiology and Pathology of Human Navigation Control.
    Schöberl F; Zwergal A; Brandt T
    Front Neural Circuits; 2020; 14():6. PubMed ID: 32210769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perspective: Assessing the Flexible Acquisition, Integration, and Deployment of Human Spatial Representations and Information.
    Starrett MJ; Ekstrom AD
    Front Hum Neurosci; 2018; 12():281. PubMed ID: 30050422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Navigation strategies in patients with vestibular loss tested in a virtual reality T-maze.
    Gammeri R; Léonard J; Toupet M; Hautefort C; van Nechel C; Besnard S; Machado ML; Nakul E; Montava M; Lavieille JP; Lopez C
    J Neurol; 2022 Aug; 269(8):4333-4348. PubMed ID: 35306619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Egocentric and allocentric navigation strategies in Williams syndrome and typical development.
    Broadbent HJ; Farran EK; Tolmie A
    Dev Sci; 2014 Nov; 17(6):920-34. PubMed ID: 24702907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Much of What We Learn in Virtual Reality Transfers to Real-World Navigation?
    Hejtmanek L; Starrett M; Ferrer E; Ekstrom AD
    Multisens Res; 2020 Mar; 33(4-5):479-503. PubMed ID: 31972540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allocentric memory impaired and egocentric memory intact as assessed by virtual reality in recent-onset schizophrenia.
    Weniger G; Irle E
    Schizophr Res; 2008 Apr; 101(1-3):201-9. PubMed ID: 18276116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereosonic vision: Exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm.
    Massiceti D; Hicks SL; van Rheede JJ
    PLoS One; 2018; 13(7):e0199389. PubMed ID: 29975734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced spatial navigation skills in sequence-space synesthetes.
    van Petersen E; Altgassen M; van Lier R; van Leeuwen TM
    Cortex; 2020 Sep; 130():49-63. PubMed ID: 32640374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NavWell: A simplified virtual-reality platform for spatial navigation and memory experiments.
    Commins S; Duffin J; Chaves K; Leahy D; Corcoran K; Caffrey M; Keenan L; Finan D; Thornberry C
    Behav Res Methods; 2020 Jun; 52(3):1189-1207. PubMed ID: 31637666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential egocentric navigation and reliance on landmarks in Williams syndrome and typical development.
    Broadbent HJ; Farran EK; Tolmie A
    Front Psychol; 2015; 6():216. PubMed ID: 25762973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual perception, visual-spatial cognition and mathematics: Associations and predictions in children with cerebral palsy.
    Critten V; Campbell E; Farran E; Messer D
    Res Dev Disabil; 2018 Sep; 80():180-191. PubMed ID: 30048837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.