These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 33329252)
21. Age-related impairment of navigation and strategy in virtual star maze. Zhang JX; Wang L; Hou HY; Yue CL; Wang L; Li HJ BMC Geriatr; 2021 Feb; 21(1):108. PubMed ID: 33546606 [TBL] [Abstract][Full Text] [Related]
22. Motor performance of individuals with cerebral palsy in a virtual game using a mobile phone. de Paula JN; de Mello Monteiro CB; da Silva TD; Capelini CM; de Menezes LDC; Massetti T; Tonks J; Watson S; Nicolai Ré AH Disabil Rehabil Assist Technol; 2018 Aug; 13(6):609-613. PubMed ID: 29092683 [TBL] [Abstract][Full Text] [Related]
23. Selective deficit in spatial memory strategies contrast to intact response strategies in patients with schizophrenia spectrum disorders tested in a virtual navigation task. Wilkins LK; Girard TA; Konishi K; King M; Herdman KA; King J; Christensen B; Bohbot VD Hippocampus; 2013 Nov; 23(11):1015-24. PubMed ID: 23939937 [TBL] [Abstract][Full Text] [Related]
24. Using virtual reality to distinguish subjects with multiple- but not single-domain amnestic mild cognitive impairment from normal elderly subjects. Mohammadi A; Kargar M; Hesami E Psychogeriatrics; 2018 Mar; 18(2):132-142. PubMed ID: 29409155 [TBL] [Abstract][Full Text] [Related]
25. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze. van Gerven DJH; Ferguson T; Skelton RW Neurobiol Learn Mem; 2016 Jul; 132():29-39. PubMed ID: 27174311 [TBL] [Abstract][Full Text] [Related]
26. Differential diagnosis of schizophrenia and schizoaffective disorder from normal subjects using virtual reality. Kargar M; Askari S; Khoshaman A; Mohammadi A Psychiatry Res; 2019 Mar; 273():378-386. PubMed ID: 30682560 [TBL] [Abstract][Full Text] [Related]
27. Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Weniger G; Ruhleder M; Lange C; Wolf S; Irle E Neuropsychologia; 2011 Feb; 49(3):518-27. PubMed ID: 21185847 [TBL] [Abstract][Full Text] [Related]
28. Motor learning paradigm and contextual interference in manual computer tasks in individuals with cerebral palsy. Prado MTA; Fernani DCGL; Silva TDD; Smorenburg ARP; Abreu LC; Monteiro CBM Res Dev Disabil; 2017 May; 64():56-63. PubMed ID: 28351764 [TBL] [Abstract][Full Text] [Related]
30. Aging and spatial cues influence the updating of navigational memories. Merhav M; Wolbers T Sci Rep; 2019 Aug; 9(1):11469. PubMed ID: 31391574 [TBL] [Abstract][Full Text] [Related]
31. To be active through indoor-climbing: an exploratory feasibility study in a group of children with cerebral palsy and typically developing children. Schram Christensen M; Jensen T; Voigt CB; Nielsen JB; Lorentzen J BMC Neurol; 2017 Jun; 17(1):112. PubMed ID: 28619011 [TBL] [Abstract][Full Text] [Related]
32. Differences in autonomic functions as related to induced stress between children with and without cerebral palsy while performing a virtual meal-making task. Kirshner S; Weiss PL; Tirosh E Res Dev Disabil; 2016; 49-50():247-57. PubMed ID: 26735708 [TBL] [Abstract][Full Text] [Related]
33. A virtual reality platform for memory evaluation: Assessing effects of spatial strategies. Rodríguez MF; Ramirez Butavand D; Cifuentes MV; Bekinschtein P; Ballarini F; García Bauza C Behav Res Methods; 2022 Dec; 54(6):2707-2719. PubMed ID: 34918216 [TBL] [Abstract][Full Text] [Related]
34. Analysis of motor performance in individuals with cerebral palsy using a non-immersive virtual reality task - a pilot study. Martins FPA; Massetti T; Crocetta TB; Lopes PB; da Silva AA; Figueiredo EF; de Abreu LC; da Silva TD; Monteiro CBM Neuropsychiatr Dis Treat; 2019; 15():417-428. PubMed ID: 30787616 [TBL] [Abstract][Full Text] [Related]
35. Usability of an Embodied CAVE System for Spatial Navigation Training in Mild Cognitive Impairment. Tuena C; Serino S; Stramba-Badiale C; Pedroli E; Goulene KM; Stramba-Badiale M; Riva G J Clin Med; 2023 Mar; 12(5):. PubMed ID: 36902733 [TBL] [Abstract][Full Text] [Related]
36. Topographical Working Memory in Children with Cerebral Palsy. Bartonek Å; Piccardi L; Guariglia C J Mot Behav; 2021; 53(2):200-208. PubMed ID: 32281907 [TBL] [Abstract][Full Text] [Related]
37. The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review. Cogné M; Taillade M; N'Kaoua B; Tarruella A; Klinger E; Larrue F; Sauzéon H; Joseph PA; Sorita E Ann Phys Rehabil Med; 2017 Jun; 60(3):164-176. PubMed ID: 27017533 [TBL] [Abstract][Full Text] [Related]
38. Incidental learning of allocentric and egocentric strategies by both men and women in a dual-strategy virtual Morris Water Maze. Ferguson TD; Livingstone-Lee SA; Skelton RW Behav Brain Res; 2019 May; 364():281-295. PubMed ID: 30794853 [TBL] [Abstract][Full Text] [Related]
39. Hex Maze: A new virtual maze able to track acquisition and usage of three navigation strategies. Spriggs MJ; Kirk IJ; Skelton RW Behav Brain Res; 2018 Feb; 339():195-206. PubMed ID: 29203335 [TBL] [Abstract][Full Text] [Related]
40. The human parahippocampal cortex subserves egocentric spatial learning during navigation in a virtual maze. Weniger G; Siemerkus J; Schmidt-Samoa C; Mehlitz M; Baudewig J; Dechent P; Irle E Neurobiol Learn Mem; 2010 Jan; 93(1):46-55. PubMed ID: 19683063 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]