BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 33329427)

  • 1. Decline in Soil Microbial Abundance When Camelina Introduced Into a Monoculture Wheat System.
    Hansen JC; Schillinger WF; Sullivan TS; Paulitz TC
    Front Microbiol; 2020; 11():571178. PubMed ID: 33329427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil Microbial Biomass and Fungi Reduced With Canola Introduced Into Long-Term Monoculture Wheat Rotations.
    Hansen JC; Schillinger WF; Sullivan TS; Paulitz TC
    Front Microbiol; 2019; 10():1488. PubMed ID: 31354643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weed responses to fallow management in Pacific Northwest dryland cropping systems.
    San Martín C; Long DS; Gourlie JA; Barroso J
    PLoS One; 2018; 13(9):e0204200. PubMed ID: 30235310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of Rotation-Fallow Practices on Bacterial Community Structure in Paddy Fields.
    Li N; Li X; Li S; Guo S; Wan Z; Huang G; Xu H
    Microbiol Spectr; 2022 Aug; 10(4):e0022722. PubMed ID: 35894616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungal Community Structural and Microbial Functional Pattern Changes After Soil Amendments by Oilseed Meals of
    Hu P; Wu L; Hollister EB; Wang AS; Somenahally AC; Hons FM; Gentry TJ
    Front Microbiol; 2019; 10():537. PubMed ID: 30984123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of Annual Crop Rotation and Fallow on Soil AMF Community and Aggregate Stability].
    Lu ZR; Xia ZT; Lu M; Zhao JX; Li YM; Wang ZL; Fan MP
    Huan Jing Ke Xue; 2023 Sep; 44(9):5154-5163. PubMed ID: 37699833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Term Nitrogen Fertilization Elevates the Activity and Abundance of Nitrifying and Denitrifying Microbial Communities in an Upland Soil: Implications for Nitrogen Loss From Intensive Agricultural Systems.
    Wang F; Chen S; Wang Y; Zhang Y; Hu C; Liu B
    Front Microbiol; 2018; 9():2424. PubMed ID: 30405543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pea-Wheat Rotation Affects Soil Microbiota Diversity, Community Structure, and Soilborne Pathogens.
    Woo SL; De Filippis F; Zotti M; Vandenberg A; Hucl P; Bonanomi G
    Microorganisms; 2022 Feb; 10(2):. PubMed ID: 35208825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intensified Pulse Rotations Buildup Pea Rhizosphere Pathogens in Cereal and Pulse Based Cropping Systems.
    Niu Y; Bainard LD; May WE; Hossain Z; Hamel C; Gan Y
    Front Microbiol; 2018; 9():1909. PubMed ID: 30190708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Crop Rotations and Tillage on Pratylenchus spp. in the Semiarid Pacific Northwest United States.
    Smiley RW; Machado S; Gourlie JA; Pritchett LC; Yan G; Jacobsen EE
    Plant Dis; 2013 Apr; 97(4):537-546. PubMed ID: 30722234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residual Effects of 50-Year-Term Different Rotations and Continued Bare Fallow on Soil CO
    Skinulienė L; Marcinkevičienė A; Butkevičienė LM; Steponavičienė V; Petrauskas E; Bogužas V
    Plants (Basel); 2022 May; 11(10):. PubMed ID: 35631706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Crop Rotation on Take-all of Wheat in Double-Cropping Systems.
    Cunfer BM; Buntin GD; Phillips DV
    Plant Dis; 2006 Sep; 90(9):1161-1166. PubMed ID: 30781096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation.
    Sainju UM; Lenssen A; Caesar-Thonthat T; Waddell J
    J Environ Qual; 2006; 35(4):1341-7. PubMed ID: 16825454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the CropSyst Model during Wheat-Maize Rotations on the North China Plain for Identifying Soil Evaporation Losses.
    Umair M; Shen Y; Qi Y; Zhang Y; Ahmad A; Pei H; Liu M
    Front Plant Sci; 2017; 8():1667. PubMed ID: 29033960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crop yield and water use efficiency in response to long-term diversified crop rotations.
    Cui Z; Yan B; Gao Y; Wu B; Wang Y; Xie Y; Xu P; Wang H; Wen M; Wang Y; Ma X
    Front Plant Sci; 2022; 13():1024898. PubMed ID: 36275590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil Water Balance and Water Use Efficiency of Dryland Wheat in Different Precipitation Years in Response to Green Manure Approach.
    Zhang D; Yao P; Na Z; Cao W; Zhang S; Li Y; Gao Y
    Sci Rep; 2016 May; 6():26856. PubMed ID: 27225842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental impacts of different crop rotations in terms of soil compaction.
    Götze P; Rücknagel J; Jacobs A; Märländer B; Koch HJ; Christen O
    J Environ Manage; 2016 Oct; 181():54-63. PubMed ID: 27315601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato.
    Larkin RP; Honeycutt CW
    Phytopathology; 2006 Jan; 96(1):68-79. PubMed ID: 18944206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions.
    Czaban J; Wróblewska B; Sułek A; Mikos M; Boguszewska E; Podolska G; Nieróbca A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(6):874-910. PubMed ID: 25705931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crop Residues in Wheat-Oilseed Rape Rotation System: a Pivotal, Shifting Platform for Microbial Meetings.
    Kerdraon L; Balesdent MH; Barret M; Laval V; Suffert F
    Microb Ecol; 2019 May; 77(4):931-945. PubMed ID: 30834960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.