These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33329448)

  • 1. Variations of Indole Metabolites and NRPS-PKS Loci in Two Different Virulent Strains of
    Mollah MMI; Roy MC; Choi DY; Hasan MA; Al Baki MA; Yeom HS; Kim Y
    Front Microbiol; 2020; 11():583594. PubMed ID: 33329448
    [No Abstract]   [Full Text] [Related]  

  • 2. The Lrp transcriptional factor of an entomopathogenic bacterium, Xenorhabdus hominickii, activates non-ribosomal peptide synthetases to suppress insect immunity.
    Jin G; Kim IH; Kim Y
    Dev Comp Immunol; 2024 Feb; 151():105101. PubMed ID: 38000489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and bacterial characteristics of Xenorhabdus hominickii ANU101 from an entomopathogenic nematode, Steinernema monticolum.
    Park Y; Kang S; Sadekuzzaman M; Kim H; Jung JK; Kim Y
    J Invertebr Pathol; 2017 Mar; 144():74-87. PubMed ID: 28193447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An entomopathogenic bacterium, Xenorhabdus hominickii ANU101, produces oxindole and suppresses host insect immune response by inhibiting eicosanoid biosynthesis.
    Sadekuzzaman M; Park Y; Lee S; Kim K; Jung JK; Kim Y
    J Invertebr Pathol; 2017 May; 145():13-22. PubMed ID: 28302381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparative Analysis of Different
    Jin G; Khan F; Kim Y
    Insects; 2024 Sep; 15(9):. PubMed ID: 39336678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virulent secondary metabolites of entomopathogenic bacteria genera, Xenorhabdus and Photorhabdus, inhibit phospholipase A
    Mollah MMI; Kim Y
    BMC Microbiol; 2020 Nov; 20(1):359. PubMed ID: 33228536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of a transcriptional regulator, HexA, is essential for triggering the bacterial virulence of the entomopathogen, Xenorhabdus hominickii.
    Jin G; Jeong JS; Kim IH; Kim Y
    J Invertebr Pathol; 2024 Oct; 207():108219. PubMed ID: 39393625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation in pathogenicity of different strains of Xenorhabdus nematophila; Differential immunosuppressive activities and secondary metabolite production.
    Hasan MA; Ahmed S; Mollah MMI; Lee D; Kim Y
    J Invertebr Pathol; 2019 Sep; 166():107221. PubMed ID: 31356819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunosuppressive Activities of Novel PLA
    Mollah MMI; Dekebo A; Kim Y
    Insects; 2020 Aug; 11(8):. PubMed ID: 32759864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific inhibition of Xenorhabdus hominickii, an entomopathogenic bacterium, against different types of host insect phospholipase A
    Sadekuzzaman M; Kim Y
    J Invertebr Pathol; 2017 Oct; 149():97-105. PubMed ID: 28803982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Genomics between Two Xenorhabdus bovienii Strains Highlights Differential Evolutionary Scenarios within an Entomopathogenic Bacterial Species.
    Bisch G; Ogier JC; Médigue C; Rouy Z; Vincent S; Tailliez P; Givaudan A; Gaudriault S
    Genome Biol Evol; 2016 Jan; 8(1):148-60. PubMed ID: 26769959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Global Transcription Factor Lrp Is both Essential for and Inhibitory to Xenorhabdus nematophila Insecticidal Activity.
    Casanova-Torres ÁM; Shokal U; Morag N; Eleftherianos I; Goodrich-Blair H
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28411220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential immunosuppression by inhibiting PLA
    Ahmed S; Kim Y
    J Invertebr Pathol; 2018 Sep; 157():136-146. PubMed ID: 29802883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epilithic Biofilms in Lake Baikal: Screening and Diversity of PKS and NRPS Genes in the Genomes of Heterotrophic Bacteria.
    Sukhanova E; Zimens E; Kaluzhnaya O; Parfenova V; Belykh O
    Pol J Microbiol; 2018; 67(4):501-516. PubMed ID: 30550237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic Relationships in the Toxin-Producing Fungal Endophyte,
    Creamer R; Hille DB; Neyaz M; Nusayr T; Schardl CL; Cook D
    J Fungi (Basel); 2021 Jul; 7(7):. PubMed ID: 34356917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteria of the Roseobacter clade show potential for secondary metabolite production.
    Martens T; Gram L; Grossart HP; Kessler D; Müller R; Simon M; Wenzel SC; Brinkhoff T
    Microb Ecol; 2007 Jul; 54(1):31-42. PubMed ID: 17351813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-based analysis of non-ribosomal peptide synthetase and type-I polyketide synthase gene clusters in all type strains of the genus Herbidospora.
    Komaki H; Ichikawa N; Oguchi A; Hamada M; Tamura T; Fujita N
    BMC Res Notes; 2015 Oct; 8():548. PubMed ID: 26452464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated Biological Control Using a Mixture of Two Entomopathogenic Bacteria,
    Hrithik MTH; Park Y; Park H; Kim Y
    Insects; 2022 Sep; 13(10):. PubMed ID: 36292808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase.
    Du L; Sánchez C; Chen M; Edwards DJ; Shen B
    Chem Biol; 2000 Aug; 7(8):623-42. PubMed ID: 11048953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Culturable Endophytes Diversity Isolated from
    Yang RX; Zhang SW; Xue D; Xuan JH; Zhang YB; Peng BB
    Pol J Microbiol; 2018; 67(4):441-454. PubMed ID: 30550230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.