These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 33329621)
1. Assessing the Effectiveness of Frei ER; Schnell L; Vitasse Y; Wohlgemuth T; Moser B Front Plant Sci; 2020; 11():539584. PubMed ID: 33329621 [TBL] [Abstract][Full Text] [Related]
2. Transplants, Open Top Chambers (OTCs) and Gradient Studies Ask Different Questions in Climate Change Effects Studies. Yang Y; Halbritter AH; Klanderud K; Telford RJ; Wang G; Vandvik V Front Plant Sci; 2018; 9():1574. PubMed ID: 30450107 [TBL] [Abstract][Full Text] [Related]
4. Summer freezing resistance decreased in high-elevation plants exposed to experimental warming in the central Chilean Andes. Sierra-Almeida A; Cavieres LA Oecologia; 2010 May; 163(1):267-76. PubMed ID: 20237942 [TBL] [Abstract][Full Text] [Related]
5. Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth. Bokhorst S; Huiskes A; Aerts R; Convey P; Cooper EJ; Dalen L; Erschbamer B; Gudmundsson J; Hofgaard A; Hollister RD; Johnstone J; Jónsdóttir IS; Lebouvier M; Van de Vijver B; Wahren CH; Dorrepaal E Glob Chang Biol; 2013 Jan; 19(1):64-74. PubMed ID: 23504721 [TBL] [Abstract][Full Text] [Related]
6. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. Rich RL; Stefanski A; Montgomery RA; Hobbie SE; Kimball BA; Reich PB Glob Chang Biol; 2015 Jun; 21(6):2334-48. PubMed ID: 25640748 [TBL] [Abstract][Full Text] [Related]
7. Microclimatic performance of a free-air warming and CO2 enrichment experiment in windy Wyoming, USA. LeCain D; Smith D; Morgan J; Kimball BA; Pendall E; Miglietta F PLoS One; 2015; 10(2):e0116834. PubMed ID: 25658313 [TBL] [Abstract][Full Text] [Related]
8. Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Montgomery RA; Rice KE; Stefanski A; Rich RL; Reich PB Proc Natl Acad Sci U S A; 2020 May; 117(19):10397-10405. PubMed ID: 32341148 [TBL] [Abstract][Full Text] [Related]
9. Leaf temperatures in glasshouses and open-top chambers. De Boeck HJ; De Groote T; Nijs I New Phytol; 2012 Jun; 194(4):1155-1164. PubMed ID: 22448800 [TBL] [Abstract][Full Text] [Related]
10. A novel in situ passive heating method for evaluating whole-tree responses to daytime warming in remote environments. Werkmeister GA; Galbraith D; Docherty E; Borges CS; da Rocha JM; da Silva PA; Marimon BS; Marimon-Junior BH; Phillips OL; Gloor E Plant Methods; 2022 Jun; 18(1):78. PubMed ID: 35689241 [TBL] [Abstract][Full Text] [Related]
11. Infrared heater system for warming tropical forest understory plants and soils. Kimball BA; Alonso-Rodríguez AM; Cavaleri MA; Reed SC; González G; Wood TE Ecol Evol; 2018 Feb; 8(4):1932-1944. PubMed ID: 29468013 [TBL] [Abstract][Full Text] [Related]
12. Community and species-specific responses of plant traits to 23 years of experimental warming across subarctic tundra plant communities. Baruah G; Molau U; Bai Y; Alatalo JM Sci Rep; 2017 May; 7(1):2571. PubMed ID: 28566722 [TBL] [Abstract][Full Text] [Related]
13. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming. Marchin RM; Salk CF; Hoffmann WA; Dunn RR Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981 [TBL] [Abstract][Full Text] [Related]
14. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. Fu YH; Piao S; Zhou X; Geng X; Hao F; Vitasse Y; Janssens IA Glob Chang Biol; 2019 May; 25(5):1696-1703. PubMed ID: 30779408 [TBL] [Abstract][Full Text] [Related]
15. Vulnerability of the northern Mongolian steppe to climate change: insights from flower production and phenology. Liancourt P; Spence LA; Boldgiv B; Lkhagva A; Helliker BR; Casper BB; Petraitis PS Ecology; 2012 Apr; 93(4):815-24. PubMed ID: 22690632 [TBL] [Abstract][Full Text] [Related]
16. Experimental warming advances phenology of groundlayer plants at the boreal-temperate forest ecotone. Rice KE; Montgomery RA; Stefanski A; Rich RL; Reich PB Am J Bot; 2018 May; 105(5):851-861. PubMed ID: 29874393 [TBL] [Abstract][Full Text] [Related]
17. Experimental climate warming alters aspen and birch phytochemistry and performance traits for an outbreak insect herbivore. Jamieson MA; Schwartzberg EG; Raffa KF; Reich PB; Lindroth RL Glob Chang Biol; 2015 Jul; 21(7):2698-2710. PubMed ID: 25538021 [TBL] [Abstract][Full Text] [Related]