These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33329628)

  • 1. Tomato Fruit Detection and Counting in Greenhouses Using Deep Learning.
    Afonso M; Fonteijn H; Fiorentin FS; Lensink D; Mooij M; Faber N; Polder G; Wehrens R
    Front Plant Sci; 2020; 11():571299. PubMed ID: 33329628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Simple and Efficient Deep Learning-Based Framework for Automatic Fruit Recognition.
    Hussain D; Hussain I; Ismail M; Alabrah A; Ullah SS; Alaghbari HM
    Comput Intell Neurosci; 2022; 2022():6538117. PubMed ID: 35237311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the Single-Shot MultiBox Detector and YOLO Deep Learning Models for the Detection of Tomatoes in a Greenhouse.
    Magalhães SA; Castro L; Moreira G; Dos Santos FN; Cunha M; Dias J; Moreira AP
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease.
    Shoaib M; Hussain T; Shah B; Ullah I; Shah SM; Ali F; Park SH
    Front Plant Sci; 2022; 13():1031748. PubMed ID: 36275583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An extensive real-world in field tomato image dataset involving maturity classification and recognition of fresh and defect tomatoes.
    Khatun T; Razzak A; Islam MS; Uddin MS
    Data Brief; 2023 Dec; 51():109688. PubMed ID: 37920387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intact Detection of Highly Occluded Immature Tomatoes on Plants Using Deep Learning Techniques.
    Mu Y; Chen TS; Ninomiya S; Guo W
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging.
    Misra T; Arora A; Marwaha S; Chinnusamy V; Rao AR; Jain R; Sahoo RN; Ray M; Kumar S; Raju D; Jha RR; Nigam A; Goel S
    Plant Methods; 2020; 16():40. PubMed ID: 32206080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CAM-YOLO: tomato detection and classification based on improved YOLOv5 using combining attention mechanism.
    Appe SN; G A; Gn B
    PeerJ Comput Sci; 2023; 9():e1463. PubMed ID: 37547387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth image conversion model based on CycleGAN for growing tomato truss identification.
    Jung DH; Kim CY; Lee TS; Park SH
    Plant Methods; 2022 Jun; 18(1):83. PubMed ID: 35715799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early real-time detection algorithm of tomato diseases and pests in the natural environment.
    Wang X; Liu J; Zhu X
    Plant Methods; 2021 Apr; 17(1):43. PubMed ID: 33892765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TasselNet: counting maize tassels in the wild via local counts regression network.
    Lu H; Cao Z; Xiao Y; Zhuang B; Shen C
    Plant Methods; 2017; 13():79. PubMed ID: 29118821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maize tassels detection: a benchmark of the state of the art.
    Zou H; Lu H; Li Y; Liu L; Cao Z
    Plant Methods; 2020; 16():108. PubMed ID: 32782455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-Field Automatic Identification of Pomegranates Using a Farmer Robot.
    Devanna RP; Milella A; Marani R; Garofalo SP; Vivaldi GA; Pascuzzi S; Galati R; Reina G
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward Real Scenery: A Lightweight Tomato Growth Inspection Algorithm for Leaf Disease Detection and Fruit Counting.
    Kang R; Huang J; Zhou X; Ren N; Sun S
    Plant Phenomics; 2024; 6():0174. PubMed ID: 38629080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition and Counting of Apples in a Dynamic State Using a 3D Camera and Deep Learning Algorithms for Robotic Harvesting Systems.
    Abeyrathna RMRD; Nakaguchi VM; Minn A; Ahamed T
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dataset of tomato fruits images for object detection in the complex lighting environment of plant factories.
    Wu ZW; Liu MH; Sun CX; Wang XF
    Data Brief; 2023 Jun; 48():109291. PubMed ID: 37383732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Automated, Clip-Type, Small Internet of Things Camera-Based Tomato Flower and Fruit Monitoring and Harvest Prediction System.
    Lee U; Islam MP; Kochi N; Tokuda K; Nakano Y; Naito H; Kawasaki Y; Ota T; Sugiyama T; Ahn DH
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent Fruit Yield Estimation for Orchards Using Deep Learning Based Semantic Segmentation Techniques-A Review.
    Maheswari P; Raja P; Apolo-Apolo OE; Pérez-Ruiz M
    Front Plant Sci; 2021; 12():684328. PubMed ID: 34249054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture.
    Zheng YY; Kong JL; Jin XB; Wang XY; Zuo M
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Central Object Segmentation by Deep Learning to Continuously Monitor Fruit Growth through RGB Images.
    Fukuda M; Okuno T; Yuki S
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.