These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33329668)

  • 1. Corrigendum: How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms.
    Aung MS; Masuda H
    Front Plant Sci; 2020; 11():601527. PubMed ID: 33329668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms.
    Aung MS; Masuda H
    Front Plant Sci; 2020; 11():1102. PubMed ID: 32849682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotianamine Synthesis by
    Aung MS; Masuda H; Nozoye T; Kobayashi T; Jeon JS; An G; Nishizawa NK
    Front Plant Sci; 2019; 10():660. PubMed ID: 31231401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice.
    Zhang Y; Xu YH; Yi HY; Gong JM
    Plant J; 2012 Nov; 72(3):400-10. PubMed ID: 22731699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corrigendum: Involvement of Arabidopsis Multi-Copper Oxidase-Encoding
    Bernal M; Krämer U
    Front Plant Sci; 2021; 12():813380. PubMed ID: 34925433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OsIRO3 Plays an Essential Role in Iron Deficiency Responses and Regulates Iron Homeostasis in Rice.
    Wang W; Ye J; Ma Y; Wang T; Shou H; Zheng L
    Plants (Basel); 2020 Aug; 9(9):. PubMed ID: 32854449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrigendum: Pathway Editing Targets for Thiamine Biofortification in Rice Grains.
    Minhas AP; Tuli R; Puri S
    Front Plant Sci; 2018; 9():1813. PubMed ID: 30719027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrigendum: Nitric Oxide Affects Rice Root Growth by Regulating Auxin Transport Under Nitrate Supply.
    Sun H; Feng F; Liu J; Zhao Q
    Front Plant Sci; 2019; 10():1123. PubMed ID: 31572420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corrigendum: Phenotypic, Transcriptomic, and Metabolomic Signatures of Root-Specifically Overexpressed
    Yan H; Sun H; Jia X; Lv C; Li J; Zhao Q
    Front Plant Sci; 2020; 11():641990. PubMed ID: 33542727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrigendum: Progress in rice sheath blight resistance research.
    Chen J; Xuan Y; Yi J; Xiao G; Yuan P; Li D
    Front Plant Sci; 2023; 14():1232679. PubMed ID: 37521925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrigendum: Integrated transcriptomics and miRNAomics provide insights into the complex multi-tiered regulatory networks associated with coleoptile senescence in rice.
    Sasi JM; VijayaKumar C; Kukreja B; Budhwar R; Shukla RN; Agarwal M; Katiyar-Agarwal S
    Front Plant Sci; 2023; 14():1163471. PubMed ID: 36923122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corrigendum: SUMOylation of OsPSTOL1 is essential for regulating phosphate starvation responses in rice and
    Mukkawar V; Roy D; Sue-Ob K; Jones A; Zhang C; Bhagat PK; Kakkunnath SM; Heuer S; Sadanandom A
    Front Plant Sci; 2024; 15():1412657. PubMed ID: 38899153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron.
    Inoue H; Higuchi K; Takahashi M; Nakanishi H; Mori S; Nishizawa NK
    Plant J; 2003 Nov; 36(3):366-81. PubMed ID: 14617093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corrigendum: The ÓMICAS alliance, an international research program on multi-omics for crop breeding optimization.
    Jaramillo-Botero A; Colorado J; Quimbaya M; Rebolledo MC; Lorieux M; Ghneim-Herrera T; Arango CA; Tobón LE; Finke J; Rocha C; Muñoz F; Riascos JJ; Silva F; Chirinda N; Caccamo M; Vandepoele K; Goddard WA
    Front Plant Sci; 2022; 13():1104501. PubMed ID: 36605960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice.
    Bashir K; Nozoye T; Nagasaka S; Rasheed S; Miyauchi N; Seki M; Nakanishi H; Nishizawa NK
    J Exp Bot; 2017 Mar; 68(7):1785-1795. PubMed ID: 28369596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corrigendum: Multi-Dimensional Plant Element Stoichiometry-Looking Beyond Carbon, Nitrogen, and Phosphorus.
    Ågren GI; Weih M
    Front Plant Sci; 2020; 11():915. PubMed ID: 32733505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecophysiological responses to excess iron in lowland and upland rice cultivars.
    Müller C; Silveira SFDS; Daloso DM; Mendes GC; Merchant A; Kuki KN; Oliva MA; Loureiro ME; Almeida AM
    Chemosphere; 2017 Dec; 189():123-133. PubMed ID: 28934652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrigendum: Molecular Origins of Functional Diversity in Benzylisoquinoline Alkaloid Methyltransferases.
    Morris JS; Facchini PJ
    Front Plant Sci; 2019; 10():1436. PubMed ID: 31787998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PDH45 transgenic rice maintain cell viability through lower accumulation of Na(+), ROS and calcium homeostasis in roots under salinity stress.
    Nath M; Yadav S; Kumar Sahoo R; Passricha N; Tuteja R; Tuteja N
    J Plant Physiol; 2016 Feb; 191():1-11. PubMed ID: 26687010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corrigendum: Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli.
    Canarini A; Kaiser C; Merchant A; Richter A; Wanek W
    Front Plant Sci; 2019; 10():420. PubMed ID: 31024593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.