BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 33330380)

  • 21. Endothelium-dependent coronary vasodilatation requires NADPH oxidase-derived reactive oxygen species.
    Feng J; Damrauer SM; Lee M; Sellke FW; Ferran C; Abid MR
    Arterioscler Thromb Vasc Biol; 2010 Sep; 30(9):1703-10. PubMed ID: 20702812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endothelial Microparticle-Derived Reactive Oxygen Species: Role in Endothelial Signaling and Vascular Function.
    Burger D; Turner M; Munkonda MN; Touyz RM
    Oxid Med Cell Longev; 2016; 2016():5047954. PubMed ID: 27313830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction.
    Teixeira RB; Pfeiffer M; Zhang P; Shafique E; Rayta B; Karbasiafshar C; Ahsan N; Sellke FW; Abid MR
    Basic Res Cardiol; 2023 Jan; 118(1):3. PubMed ID: 36639609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Where Metabolism Meets Senescence: Focus on Endothelial Cells.
    Sabbatinelli J; Prattichizzo F; Olivieri F; Procopio AD; Rippo MR; Giuliani A
    Front Physiol; 2019; 10():1523. PubMed ID: 31920721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NADPH oxidase-generated reactive oxygen species are required for stromal cell-derived factor-1α-stimulated angiogenesis.
    Pi X; Xie L; Portbury AL; Kumar S; Lockyer P; Li X; Patterson C
    Arterioscler Thromb Vasc Biol; 2014 Sep; 34(9):2023-32. PubMed ID: 24990230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intermittent Hypoxia Induced Formation of "Endothelial Cell-Colony Forming Units (EC-CFUs)" Is Affected by ROS and Oxidative Stress.
    Avezov K; Aizenbud D; Lavie L
    Front Neurol; 2018; 9():447. PubMed ID: 29963003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NADPH oxidase isoform selective regulation of endothelial cell proliferation and survival.
    Peshavariya H; Dusting GJ; Jiang F; Halmos LR; Sobey CG; Drummond GR; Selemidis S
    Naunyn Schmiedebergs Arch Pharmacol; 2009 Aug; 380(2):193-204. PubMed ID: 19337723
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel role of p66Shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells.
    Oshikawa J; Kim SJ; Furuta E; Caliceti C; Chen GF; McKinney RD; Kuhr F; Levitan I; Fukai T; Ushio-Fukai M
    Am J Physiol Heart Circ Physiol; 2012 Feb; 302(3):H724-32. PubMed ID: 22101521
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reactive oxygen species in the cerebral circulation: physiological roles and therapeutic implications for hypertension and stroke.
    Paravicini TM; Drummond GR; Sobey CG
    Drugs; 2004; 64(19):2143-57. PubMed ID: 15456332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low glucose induces mitochondrial reactive oxygen species via fatty acid oxidation in bovine aortic endothelial cells.
    Kajihara N; Kukidome D; Sada K; Motoshima H; Furukawa N; Matsumura T; Nishikawa T; Araki E
    J Diabetes Investig; 2017 Nov; 8(6):750-761. PubMed ID: 28406580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox signaling in angiogenesis: role of NADPH oxidase.
    Ushio-Fukai M
    Cardiovasc Res; 2006 Jul; 71(2):226-35. PubMed ID: 16781692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The H(+)-ATP synthase: a gate to ROS-mediated cell death or cell survival.
    Martínez-Reyes I; Cuezva JM
    Biochim Biophys Acta; 2014 Jul; 1837(7):1099-112. PubMed ID: 24685430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct sensing of endothelial oxidants by vascular endothelial growth factor receptor-2 and c-Src.
    Lee M; Choy WC; Abid MR
    PLoS One; 2011; 6(12):e28454. PubMed ID: 22145046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of reactive oxygen species derived from different NADPH oxidase isoforms and mitochondria in oxalate-induced oxidative stress and cell injury.
    Qian X; Wu W; Hu H; Yu X; Wang S; Zhu J; Zhang J
    Urolithiasis; 2022 Apr; 50(2):149-158. PubMed ID: 35128564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic and cellular modifiers of oxidative stress: what can we learn from fatty acid oxidation defects?
    Olsen RK; Cornelius N; Gregersen N
    Mol Genet Metab; 2013; 110 Suppl():S31-9. PubMed ID: 24206932
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Abrupt reoxygenation of microvascular endothelial cells after hypoxia activates ERK1/2 and JNK1, leading to NADPH oxidase-dependent oxidant production.
    Yu G; Peng T; Feng Q; Tyml K
    Microcirculation; 2007 Feb; 14(2):125-36. PubMed ID: 17365667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase.
    Sorescu GP; Song H; Tressel SL; Hwang J; Dikalov S; Smith DA; Boyd NL; Platt MO; Lassègue B; Griendling KK; Jo H
    Circ Res; 2004 Oct; 95(8):773-9. PubMed ID: 15388638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Importance of NADPH Oxidases and Redox Signaling in Angiogenesis.
    Prieto-Bermejo R; Hernández-Hernández A
    Antioxidants (Basel); 2017 May; 6(2):. PubMed ID: 28505091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pharmacological strategies to lower crosstalk between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria.
    Koju N; Taleb A; Zhou J; Lv G; Yang J; Cao X; Lei H; Ding Q
    Biomed Pharmacother; 2019 Mar; 111():1478-1498. PubMed ID: 30841463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.