These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33330634)

  • 1. Identifying Robust Microbiota Signatures and Interpretable Rules to Distinguish Cancer Subtypes.
    Chen L; Li Z; Zeng T; Zhang YH; Liu D; Li H; Huang T; Cai YD
    Front Mol Biosci; 2020; 7():604794. PubMed ID: 33330634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of molecular subtypes of breast cancer using BI-RADS features based on a "white box" machine learning approach in a multi-modal imaging setting.
    Wu M; Zhong X; Peng Q; Xu M; Huang S; Yuan J; Ma J; Tan T
    Eur J Radiol; 2019 May; 114():175-184. PubMed ID: 31005170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognizing Pattern and Rule of Mutation Signatures Corresponding to Cancer Types.
    Chen L; Zhou X; Zeng T; Pan X; Zhang YH; Huang T; Fang Z; Cai YD
    Front Cell Dev Biol; 2021; 9():712931. PubMed ID: 34513841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying the Signatures and Rules of Circulating Extracellular MicroRNA for Distinguishing Cancer Subtypes.
    Yuan F; Li Z; Chen L; Zeng T; Zhang YH; Ding S; Huang T; Cai YD
    Front Genet; 2021; 12():651610. PubMed ID: 33767734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretable Decision Sets: A Joint Framework for Description and Prediction.
    Lakkaraju H; Bach SH; Jure L
    KDD; 2016 Aug; 2016():1675-1684. PubMed ID: 27853627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying Lung Cancer Cell Markers with Machine Learning Methods and Single-Cell RNA-Seq Data.
    Huang GH; Zhang YH; Chen L; Li Y; Huang T; Cai YD
    Life (Basel); 2021 Sep; 11(9):. PubMed ID: 34575089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New and Preliminary Evidence on Altered Oral and Gut Microbiota in Individuals with Autism Spectrum Disorder (ASD): Implications for ASD Diagnosis and Subtyping Based on Microbial Biomarkers.
    Kong X; Liu J; Cetinbas M; Sadreyev R; Koh M; Huang H; Adeseye A; He P; Zhu J; Russell H; Hobbie C; Liu K; Onderdonk AB
    Nutrients; 2019 Sep; 11(9):. PubMed ID: 31489949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretable Log Contrasts for the Classification of Health Biomarkers: a New Approach to Balance Selection.
    Quinn TP; Erb I
    mSystems; 2020 Apr; 5(2):. PubMed ID: 32265314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretable Machine Learning Reveals Dissimilarities Between Subtypes of Autism Spectrum Disorder.
    Garbulowski M; Smolinska K; Diamanti K; Pan G; Maqbool K; Feuk L; Komorowski J
    Front Genet; 2021; 12():618277. PubMed ID: 33719335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Phenotypes as Potential Biomarkers for Linking Gut Microbiome With Inflammatory Bowel Diseases.
    Iablokov SN; Klimenko NS; Efimova DA; Shashkova T; Novichkov PS; Rodionov DA; Tyakht AV
    Front Mol Biosci; 2020; 7():603740. PubMed ID: 33537340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taxonomy-aware feature engineering for microbiome classification.
    Oudah M; Henschel A
    BMC Bioinformatics; 2018 Jun; 19(1):227. PubMed ID: 29907097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.
    Wang CJ; Hamm CA; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Weinreb JC; Duncan JS; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3348-3357. PubMed ID: 31093705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of the microbiome of the plant holobiont.
    Vandenkoornhuyse P; Quaiser A; Duhamel M; Le Van A; Dufresne A
    New Phytol; 2015 Jun; 206(4):1196-206. PubMed ID: 25655016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing-bias correction with DEBIAS-M improves cross-study generalization of microbiome-based prediction models.
    Austin GI; Kav AB; Park H; Biermann J; Uhlemann AC; Korem T
    bioRxiv; 2024 Feb; ():. PubMed ID: 38405914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging 16S rRNA Microbiome Sequencing Data to Identify Bacterial Signatures for Irritable Bowel Syndrome.
    Liu Y; Li W; Yang H; Zhang X; Wang W; Jia S; Xiang B; Wang Y; Miao L; Zhang H; Wang L; Wang Y; Song J; Sun Y; Chai L; Tian X
    Front Cell Infect Microbiol; 2021; 11():645951. PubMed ID: 34178718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Analysis of Soil Microbiome Profiles in the Companion Planting of White Clover and Orchard Grass Using 16S rRNA Gene Sequencing Data.
    Chen L; Li D; Shao Y; Adni J; Wang H; Liu Y; Zhang Y
    Front Plant Sci; 2020; 11():538311. PubMed ID: 33042174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms.
    Mendes R; Garbeva P; Raaijmakers JM
    FEMS Microbiol Rev; 2013 Sep; 37(5):634-63. PubMed ID: 23790204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Greedy outcome weighted tree learning of optimal personalized treatment rules.
    Zhu R; Zhao YQ; Chen G; Ma S; Zhao H
    Biometrics; 2017 Jun; 73(2):391-400. PubMed ID: 27704531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepMicro: deep representation learning for disease prediction based on microbiome data.
    Oh M; Zhang L
    Sci Rep; 2020 Apr; 10(1):6026. PubMed ID: 32265477
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.