These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 33330920)

  • 1. Structural basis of sequestration of the anti-Shine-Dalgarno sequence in the Bacteroidetes ribosome.
    Jha V; Roy B; Jahagirdar D; McNutt ZA; Shatoff EA; Boleratz BL; Watkins DE; Bundschuh R; Basu K; Ortega J; Fredrick K
    Nucleic Acids Res; 2021 Jan; 49(1):547-567. PubMed ID: 33330920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosomes lacking bS21 gain function to regulate protein synthesis in Flavobacterium johnsoniae.
    McNutt ZA; Roy B; Gemler BT; Shatoff EA; Moon KM; Foster LJ; Bundschuh R; Fredrick K
    Nucleic Acids Res; 2023 Feb; 51(4):1927-1942. PubMed ID: 36727479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inability of Prevotella bryantii to form a functional Shine-Dalgarno interaction reflects unique evolution of ribosome binding sites in Bacteroidetes.
    Accetto T; Avguštin G
    PLoS One; 2011; 6(8):e22914. PubMed ID: 21857964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of programmed frameshifting during translation of
    Naeem FM; Gemler BT; McNutt ZA; Bundschuh R; Fredrick K
    RNA; 2024 Jan; 30(2):136-148. PubMed ID: 37949662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.
    Marzi S; Myasnikov AG; Serganov A; Ehresmann C; Romby P; Yusupov M; Klaholz BP
    Cell; 2007 Sep; 130(6):1019-31. PubMed ID: 17889647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global analysis of protein synthesis in Flavobacterium johnsoniae reveals the use of Kozak-like sequences in diverse bacteria.
    Baez WD; Roy B; McNutt ZA; Shatoff EA; Chen S; Bundschuh R; Fredrick K
    Nucleic Acids Res; 2019 Nov; 47(20):10477-10488. PubMed ID: 31602466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution.
    Mueller F; Sommer I; Baranov P; Matadeen R; Stoldt M; Wöhnert J; Görlach M; van Heel M; Brimacombe R
    J Mol Biol; 2000 Apr; 298(1):35-59. PubMed ID: 10756104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Translation Initiation Regulation Mechanism in Escherichia coli ptrB Mediated by a 5'-Terminal AUG.
    Beck HJ; Janssen GR
    J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28484048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The downstream box: an efficient and independent translation initiation signal in Escherichia coli.
    Sprengart ML; Fuchs E; Porter AG
    EMBO J; 1996 Feb; 15(3):665-74. PubMed ID: 8599950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatomy of Escherichia coli ribosome binding sites.
    Shultzaberger RK; Bucheimer RE; Rudd KE; Schneider TD
    J Mol Biol; 2001 Oct; 313(1):215-28. PubMed ID: 11601857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influences on gene expression in vivo by a Shine-Dalgarno sequence.
    Jin H; Zhao Q; Gonzalez de Valdivia EI; Ardell DH; Stenström M; Isaksson LA
    Mol Microbiol; 2006 Apr; 60(2):480-92. PubMed ID: 16573696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping the ribosome to control gene expression.
    Boehringer D; Ban N
    Cell; 2007 Sep; 130(6):983-5. PubMed ID: 17889642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1.
    Beckert B; Turk M; Czech A; Berninghausen O; Beckmann R; Ignatova Z; Plitzko JM; Wilson DN
    Nat Microbiol; 2018 Oct; 3(10):1115-1121. PubMed ID: 30177741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local absence of secondary structure permits translation of mRNAs that lack ribosome-binding sites.
    Scharff LB; Childs L; Walther D; Bock R
    PLoS Genet; 2011 Jun; 7(6):e1002155. PubMed ID: 21731509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The diversity of Shine-Dalgarno sequences sheds light on the evolution of translation initiation.
    Wen JD; Kuo ST; Chou HD
    RNA Biol; 2021 Nov; 18(11):1489-1500. PubMed ID: 33349119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An additional ribosome-binding site on mRNA of highly expressed genes and a bifunctional site on the colicin fragment of 16S rRNA from Escherichia coli: important determinants of the efficiency of translation-initiation.
    Thanaraj TA; Pandit MW
    Nucleic Acids Res; 1989 Apr; 17(8):2973-85. PubMed ID: 2657653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translation initiation region sequence preferences in Escherichia coli.
    Vimberg V; Tats A; Remm M; Tenson T
    BMC Mol Biol; 2007 Oct; 8():100. PubMed ID: 17973990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The path of messenger RNA through the ribosome.
    Yusupova GZ; Yusupov MM; Cate JH; Noller HF
    Cell; 2001 Jul; 106(2):233-41. PubMed ID: 11511350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis.
    Farwell MA; Roberts MW; Rabinowitz JC
    Mol Microbiol; 1992 Nov; 6(22):3375-83. PubMed ID: 1283001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A second putative mRNA binding site on the Escherichia coli ribosome.
    Ivanov IG; Alexandrova RA; Dragulev BP; AbouHaidar MG
    Gene; 1995 Jul; 160(1):75-9. PubMed ID: 7628721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.