These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 33331143)

  • 21. Magnetically Actuated Degradable Microrobots for Actively Controlled Drug Release and Hyperthermia Therapy.
    Park J; Jin C; Lee S; Kim JY; Choi H
    Adv Healthc Mater; 2019 Aug; 8(16):e1900213. PubMed ID: 31290597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted Drug Delivery and Imaging Using Mobile Milli/Microrobots: A Promising Future Towards Theranostic Pharmaceutical Design.
    Singh AV; Sitti M
    Curr Pharm Des; 2016; 22(11):1418-28. PubMed ID: 26654436
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetically Driven Self-Degrading Zinc-Containing Cystine Microrobots for Treatment of Prostate Cancer.
    Ussia M; Urso M; Kratochvilova M; Navratil J; Balvan J; Mayorga-Martinez CC; Vyskocil J; Masarik M; Pumera M
    Small; 2023 Apr; 19(17):e2208259. PubMed ID: 36703532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of three-lobed magnetic microrobots for cell transportation.
    Shah ZH; Sokolich M; Mallick S; Rivas D; Das S
    J Mater Chem B; 2023 Sep; 11(37):8926-8932. PubMed ID: 37435667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cooperative Micromanipulation Using the Independent Actuation of Fifty Microrobots in Parallel.
    Rahman MA; Cheng J; Wang Z; Ohta AT
    Sci Rep; 2017 Jun; 7(1):3278. PubMed ID: 28607359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and open-loop control of three-lobed nonspherical Janus microrobots.
    Shah ZH; Sockolich M; Rivas D; Das S
    MRS Adv; 2023 Nov; 8(18):1028-1032. PubMed ID: 38384324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetically actuated intelligent hydrogel-based child-parent microrobots for targeted drug delivery.
    Chen W; Wen Y; Fan X; Sun M; Tian C; Yang M; Xie H
    J Mater Chem B; 2021 Jan; 9(4):1030-1039. PubMed ID: 33398321
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Four-Dimensional-Printed Microrobots and Their Applications: A Review.
    Darmawan BA; Park JO; Go G; Choi E
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Magnetically Powered Stem Cell-Based Microrobot for Minimally Invasive Stem Cell Delivery via the Intranasal Pathway in a Mouse Brain.
    Jeon S; Park SH; Kim E; Kim JY; Kim SW; Choi H
    Adv Healthc Mater; 2021 Oct; 10(19):e2100801. PubMed ID: 34160909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow.
    Alapan Y; Bozuyuk U; Erkoc P; Karacakol AC; Sitti M
    Sci Robot; 2020 May; 5(42):. PubMed ID: 33022624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drug-Loaded IRONSperm clusters: modeling, wireless actuation, and ultrasound imaging.
    Middelhoek KINA; Magdanz V; Abelmann L; Khalil ISM
    Biomed Mater; 2022 Sep; 17(6):. PubMed ID: 35985314
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bubble-Based Microrobots with Rapid Circular Motions for Epithelial Pinning and Drug Delivery.
    Lee JG; Raj RR; Thome CP; Day NB; Martinez P; Bottenus N; Gupta A; Wyatt Shields C
    Small; 2023 Aug; 19(32):e2300409. PubMed ID: 37058137
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biohybrid Magnetic Microrobots for Tumor Assassination and Active Tissue Regeneration.
    Liu D; Zhang T; Guo Y; Liao Y; Wu Z; Jiang H; Lu Y
    ACS Appl Bio Mater; 2022 Dec; 5(12):5933-5942. PubMed ID: 36384280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular Manipulation Using Rolling Microrobots.
    Rivas D; Mallick S; Sokolich M; Das S
    Int Conf Manip Autom Robot Small Scales; 2022 Jul; 2022():. PubMed ID: 37663239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation.
    Kim S; Qiu F; Kim S; Ghanbari A; Moon C; Zhang L; Nelson BJ; Choi H
    Adv Mater; 2013 Nov; 25(41):5863-8. PubMed ID: 23864519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Delivering Microrobots in the Musculoskeletal System.
    Cao M; Sheng R; Sun Y; Cao Y; Wang H; Zhang M; Pu Y; Gao Y; Zhang Y; Lu P; Teng G; Wang Q; Rui Y
    Nanomicro Lett; 2024 Jul; 16(1):251. PubMed ID: 39037551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering microrobots for targeted cancer therapies from a medical perspective.
    Schmidt CK; Medina-Sánchez M; Edmondson RJ; Schmidt OG
    Nat Commun; 2020 Nov; 11(1):5618. PubMed ID: 33154372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Puffball-Inspired Microrobotic Systems with Robust Payload, Strong Protection, and Targeted Locomotion for On-Demand Drug Delivery.
    Song X; Sun R; Wang R; Zhou K; Xie R; Lin J; Georgiev D; Paraschiv AA; Zhao R; Stevens MM
    Adv Mater; 2022 Oct; 34(43):e2204791. PubMed ID: 36066311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Medical microrobots in reproductive medicine from the bench to the clinic.
    Nauber R; Goudu SR; Goeckenjan M; Bornhäuser M; Ribeiro C; Medina-Sánchez M
    Nat Commun; 2023 Feb; 14(1):728. PubMed ID: 36759511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.