These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 33331372)
1. First-principles theoretical study on dry reforming of methane over perfect and boron-vacancy-containing h-BN sheet-supported Ni catalysts. Zhang Y; Yao YF; Qiao YY; Wang GC Phys Chem Chem Phys; 2021 Jan; 23(1):617-627. PubMed ID: 33331372 [TBL] [Abstract][Full Text] [Related]
2. Dry Reforming of Methane on Ni/LaZrO Jiao H; Wang GC ACS Appl Mater Interfaces; 2024 Jul; 16(27):35166-35178. PubMed ID: 38924504 [TBL] [Abstract][Full Text] [Related]
3. Promoting Dry Reforming of Methane Catalysed by Atomically-Dispersed Ni over Ceria-Upgraded Boron Nitride. Li X; Phornphimon M; Zhang X; Deng J; Zhang D Chem Asian J; 2022 May; 17(9):e202101428. PubMed ID: 35246955 [TBL] [Abstract][Full Text] [Related]
4. Reaction-Induced Strong Metal-Support Interactions between Metals and Inert Boron Nitride Nanosheets. Dong J; Fu Q; Li H; Xiao J; Yang B; Zhang B; Bai Y; Song T; Zhang R; Gao L; Cai J; Zhang H; Liu Z; Bao X J Am Chem Soc; 2020 Oct; 142(40):17167-17174. PubMed ID: 32924478 [TBL] [Abstract][Full Text] [Related]
5. Harnessing Strong Metal-Support Interaction to Proliferate the Dry Reforming of Methane Performance by In Situ Reduction. Jeon OS; Lee H; Lee KS; Paidi VK; Ji Y; Kwon OC; Kim JP; Myung JH; Park SY; Yoo YJ; Lee JG; Lee SY; Shul YG ACS Appl Mater Interfaces; 2022 Mar; 14(10):12140-12148. PubMed ID: 35238550 [TBL] [Abstract][Full Text] [Related]
6. Ni Sheng K; Luan D; Jiang H; Zeng F; Wei B; Pang F; Ge J ACS Appl Mater Interfaces; 2019 Jul; 11(27):24078-24087. PubMed ID: 31194503 [TBL] [Abstract][Full Text] [Related]
7. Coking-resistant dry reforming of methane over Ni/γ-Al Yang B; Deng J; Li H; Yan T; Zhang J; Zhang D iScience; 2021 Jul; 24(7):102747. PubMed ID: 34278257 [TBL] [Abstract][Full Text] [Related]
8. Unbounding the Future: Designing NiAl-Based Catalysts for Dry Reforming of Methane. Zhang W; Zhao H; Song H; Chou L Chem Asian J; 2024 Sep; 19(17):e202400503. PubMed ID: 38842469 [TBL] [Abstract][Full Text] [Related]
9. Mechanistic insight into methane dry reforming over cobalt: a density functional theory study. Huang H; Yu Y; Zhang M Phys Chem Chem Phys; 2020 Dec; 22(46):27320-27331. PubMed ID: 33230515 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic Insights into Radical-Induced Selective Oxidation of Methane over Nonmetallic Boron Nitride Catalysts. Han P; Yan R; Wei Y; Li L; Luo J; Pan Y; Wang B; Lin J; Wan S; Xiong H; Wang Y; Wang S J Am Chem Soc; 2023 May; 145(19):10564-10575. PubMed ID: 37130240 [TBL] [Abstract][Full Text] [Related]
11. Highly Efficient and Stable Methane Dry Reforming Enabled by a Single-Site Cationic Ni Catalyst. Cheng Q; Yao X; Ou L; Hu Z; Zheng L; Li G; Morlanes N; Cerrillo JL; Castaño P; Li X; Gascon J; Han Y J Am Chem Soc; 2023 Nov; 145(46):25109-25119. PubMed ID: 37947830 [TBL] [Abstract][Full Text] [Related]
12. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane. Khairudin NF; Sukri MFF; Khavarian M; Mohamed AR Beilstein J Nanotechnol; 2018; 9():1162-1183. PubMed ID: 29719767 [TBL] [Abstract][Full Text] [Related]
13. A review of dry (CO2) reforming of methane over noble metal catalysts. Pakhare D; Spivey J Chem Soc Rev; 2014 Nov; 43(22):7813-37. PubMed ID: 24504089 [TBL] [Abstract][Full Text] [Related]
14. A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction. Hussien AGS; Polychronopoulou K Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234525 [TBL] [Abstract][Full Text] [Related]
15. Surface Spectroscopy on UHV-Grown and Technological Ni-ZrO Anic K; Wolfbeisser A; Li H; Rameshan C; Föttinger K; Bernardi J; Rupprechter G Top Catal; 2016; 59(17):1614-1627. PubMed ID: 28035177 [TBL] [Abstract][Full Text] [Related]
16. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane. Han JW; Kim C; Park JS; Lee H ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833 [TBL] [Abstract][Full Text] [Related]
17. Light-Reinforced Key Intermediate for Anticoking To Boost Highly Durable Methane Dry Reforming over Single Atom Ni Active Sites on CeO Rao Z; Wang K; Cao Y; Feng Y; Huang Z; Chen Y; Wei S; Liu L; Gong Z; Cui Y; Li L; Tu X; Ma D; Zhou Y J Am Chem Soc; 2023 Oct; ():. PubMed ID: 37792912 [TBL] [Abstract][Full Text] [Related]
18. A Single-Source Precursor Approach to Self-Supported Nickel-Manganese-Based Catalysts with Improved Stability for Effective Low-Temperature Dry Reforming of Methane. Menezes PW; Indra A; Littlewood P; Göbel C; Schomäcker R; Driess M Chempluschem; 2016 Apr; 81(4):370-377. PubMed ID: 31968753 [TBL] [Abstract][Full Text] [Related]
19. Spherical Ni Nanoparticles Supported by Nanosheet-Assembled Al Zhang S; Tang L; Yu J; Zhan W; Wang L; Guo Y; Guo Y ACS Appl Mater Interfaces; 2021 Dec; 13(49):58605-58618. PubMed ID: 34866393 [TBL] [Abstract][Full Text] [Related]
20. Biogas Conversion to Syngas Using Advanced Ni-Promoted Pyrochlore Catalysts: Effect of the CH le Saché E; Alvarez Moreno A; Reina TR Front Chem; 2021; 9():672419. PubMed ID: 33937208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]