BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33331375)

  • 1. Acid-promoted hydride transfer from an NADH analogue to a Cr(iii)-superoxo complex via a proton-coupled hydrogen atom transfer.
    Devi T; Lee YM; Fukuzumi S; Nam W
    Dalton Trans; 2021 Jan; 50(2):675-680. PubMed ID: 33331375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidations of NADH analogues by cis-[RuIV(bpy)2(py)(O)]2+ occur by hydrogen-atom transfer rather than by hydride transfer.
    Matsuo T; Mayer JM
    Inorg Chem; 2005 Apr; 44(7):2150-8. PubMed ID: 15792449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-step versus stepwise mechanism in protonated amino acid-promoted electron-transfer reduction of a quinone by electron donors and two-electron reduction by a dihydronicotinamide adenine dinucleotide analogue. Interplay between electron transfer and hydrogen bonding.
    Yuasa J; Yamada S; Fukuzumi S
    J Am Chem Soc; 2008 Apr; 130(17):5808-20. PubMed ID: 18386924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential electron-transfer and proton-transfer pathways in hydride-transfer reactions from dihydronicotinamide adenine dinucleotide analogues to non-heme oxoiron(IV) complexes and p-chloranil. Detection of radical cations of NADH analogues in acid-promoted hydride-transfer reactions.
    Fukuzumi S; Kotani H; Lee YM; Nam W
    J Am Chem Soc; 2008 Nov; 130(45):15134-42. PubMed ID: 18937476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Chromium(III)-Superoxo Complex as a Three-Electron Oxidant with a Large Tunneling Effect in Multi-Electron Oxidation of NADH Analogues.
    Devi T; Lee YM; Jung J; Sankaralingam M; Nam W; Fukuzumi S
    Angew Chem Int Ed Engl; 2017 Mar; 56(13):3510-3515. PubMed ID: 28266771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic Hydroxylation of Benzene to Phenol by Dioxygen with an NADH Analogue.
    Hirose K; Ohkubo K; Fukuzumi S
    Chemistry; 2016 Aug; 22(36):12904-9. PubMed ID: 27465104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insights into the reactions of hydride transfer versus hydrogen atom transfer by a trans-dioxoruthenium(VI) complex.
    Dhuri SN; Lee YM; Seo MS; Cho J; Narulkar DD; Fukuzumi S; Nam W
    Dalton Trans; 2015 Apr; 44(16):7634-42. PubMed ID: 25811701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the Reactivity of Chromium(III)-Superoxo Species by Coordinating Axial Ligands.
    Goo YR; Maity AC; Cho KB; Lee YM; Seo MS; Park YJ; Cho J; Nam W
    Inorg Chem; 2015 Nov; 54(21):10513-20. PubMed ID: 26486819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocatalytic oxygenation of 10-methyl-9,10-dihydroacridine by O₂ with manganese porphyrins.
    Jung J; Ohkubo K; Goldberg DP; Fukuzumi S
    J Phys Chem A; 2014 Aug; 118(32):6223-9. PubMed ID: 25079061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and reactivity of the first-row d-block metal-superoxo complexes.
    Fukuzumi S; Lee YM; Nam W
    Dalton Trans; 2019 Jul; 48(26):9469-9489. PubMed ID: 31112168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanistic dichotomy in scandium ion-promoted hydride transfer of an NADH analogue: delicate balance between one-step hydride-transfer and electron-transfer pathways.
    Yuasa J; Yamada S; Fukuzumi S
    J Am Chem Soc; 2006 Nov; 128(46):14938-48. PubMed ID: 17105305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scandium ion-promoted reduction of heterocyclic N=N double bond. Hydride transfer vs electron transfer.
    Fukuzumi S; Yuasa J; Suenobu T
    J Am Chem Soc; 2002 Oct; 124(42):12566-73. PubMed ID: 12381201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic mononuclear nonheme iron-oxygen intermediates.
    Nam W
    Acc Chem Res; 2015 Aug; 48(8):2415-23. PubMed ID: 26203519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen Atom Transfer Reactions of Mononuclear Nonheme Metal-Oxygen Intermediates.
    Nam W; Lee YM; Fukuzumi S
    Acc Chem Res; 2018 Sep; 51(9):2014-2022. PubMed ID: 30179459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5'-methyl phosphate, with in situ generated [CpRh(Bpy)H](+): structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives.
    Lo HC; Leiva C; Buriez O; Kerr JB; Olmstead MM; Fish RH
    Inorg Chem; 2001 Dec; 40(26):6705-16. PubMed ID: 11735482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aromatic hydroxylation of anthracene derivatives by a chromium(iii)-superoxo complex via proton-coupled electron transfer.
    Devi T; Lee YM; Nam W; Fukuzumi S
    Chem Commun (Camb); 2019 Jul; 55(57):8286-8289. PubMed ID: 31246193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple pathways in the oxidation of a NADH analogue.
    Song N; Zhang MT; Binstead RA; Fang Z; Meyer TJ
    Inorg Chem; 2014 Apr; 53(8):4100-5. PubMed ID: 24716437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steric effect for proton, hydrogen-atom, and hydride transfer reactions with geometric isomers of NADH-model ruthenium complexes.
    Cohen BW; Polyansky DE; Achord P; Cabelli D; Muckerman JT; Tanaka K; Thummel RP; Zong R; Fujita E
    Faraday Discuss; 2012; 155():129-44; discussion 207-22. PubMed ID: 22470971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chromium(III)-superoxo complex in oxygen atom transfer reactions as a chemical model of cysteine dioxygenase.
    Cho J; Woo J; Nam W
    J Am Chem Soc; 2012 Jul; 134(27):11112-5. PubMed ID: 22713134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-valent chromium-oxo complex acting as an efficient catalyst precursor for selective two-electron reduction of dioxygen by a ferrocene derivative.
    Liu S; Mase K; Bougher C; Hicks SD; Abu-Omar MM; Fukuzumi S
    Inorg Chem; 2014 Jul; 53(14):7780-8. PubMed ID: 24988040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.