BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33331375)

  • 21. Remarkable Acid Catalysis in Proton-Coupled Electron-Transfer Reactions of a Chromium(III)-Superoxo Complex.
    Devi T; Lee YM; Nam W; Fukuzumi S
    J Am Chem Soc; 2018 Jul; 140(27):8372-8375. PubMed ID: 29949715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox-Induced Structural Reorganization Dictates Kinetics of Cobalt(III) Hydride Formation via Proton-Coupled Electron Transfer.
    Kurtz DA; Dhar D; Elgrishi N; Kandemir B; McWilliams SF; Howland WC; Chen CH; Dempsey JL
    J Am Chem Soc; 2021 Mar; 143(9):3393-3406. PubMed ID: 33621088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydride transfer from NADH analogues to a nonheme manganese(IV)-oxo complex via rate-determining electron transfer.
    Yoon H; Lee YM; Nam W; Fukuzumi S
    Chem Commun (Camb); 2014 Nov; 50(85):12944-6. PubMed ID: 25220234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What are the differences between ascorbic acid and NADH as hydride and electron sources in vivo on thermodynamics, kinetics, and mechanism?
    Zhu XQ; Mu YY; Li XT
    J Phys Chem B; 2011 Dec; 115(49):14794-811. PubMed ID: 22035071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistic insights into the C-H bond activation of hydrocarbons by chromium(IV) oxo and chromium(III) superoxo complexes.
    Cho KB; Kang H; Woo J; Park YJ; Seo MS; Cho J; Nam W
    Inorg Chem; 2014 Jan; 53(1):645-52. PubMed ID: 24299279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and Reactivity of a Manganese(VI) Nitrido Complex Bearing a Tetraamido Macrocyclic Ligand.
    Shi H; Lee HK; Pan Y; Lau KC; Yiu SM; Lam WWY; Man WL; Lau TC
    J Am Chem Soc; 2021 Sep; 143(38):15863-15872. PubMed ID: 34498856
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electron- and hydride-transfer reactivity of an isolable manganese(V)-oxo complex.
    Fukuzumi S; Kotani H; Prokop KA; Goldberg DP
    J Am Chem Soc; 2011 Feb; 133(6):1859-69. PubMed ID: 21218824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical behavior of a Rh(pentamethylcyclopentadienyl) complex bearing an NAD
    Kobayashi K; Koizumi TA; Ghosh D; Kajiwara T; Kitagawa S; Tanaka K
    Dalton Trans; 2018 Apr; 47(15):5207-5216. PubMed ID: 29537007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of the C4-H bond dissociation energies of NADH models and their radical cations in acetonitrile.
    Zhu XQ; Li HR; Li Q; Ai T; Lu JY; Yang Y; Cheng JP
    Chemistry; 2003 Feb; 9(4):871-80. PubMed ID: 12584702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydride reduction of NAD+ analogues by isopropyl alcohol: kinetics, deuterium isotope effects and mechanism.
    Lu Y; Qu F; Moore B; Endicott D; Kuester W
    J Org Chem; 2008 Jul; 73(13):4763-70. PubMed ID: 18543993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanistic borderline between one-step hydrogen transfer and sequential transfers of electron and proton in reactions of NADH analogues with triplet excited states of tetrazines and Ru(bpy)(3)2+.
    Yuasa J; Fukuzumi S
    J Am Chem Soc; 2006 Nov; 128(44):14281-92. PubMed ID: 17076501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydride-exchange reactions between NADH and NAD+ model compounds under non-steady-state conditions. Apparent and real kinetic isotope effects.
    Lu Y; Zhao Y; Handoo KL; Parker VD
    Org Biomol Chem; 2003 Jan; 1(1):173-81. PubMed ID: 12929407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Size- and shape-dependent activity of metal nanoparticles as hydrogen-evolution catalysts: mechanistic insights into photocatalytic hydrogen evolution.
    Kotani H; Hanazaki R; Ohkubo K; Yamada Y; Fukuzumi S
    Chemistry; 2011 Feb; 17(9):2777-85. PubMed ID: 21280108
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen storage and evolution catalysed by metal hydride complexes.
    Fukuzumi S; Suenobu T
    Dalton Trans; 2013 Jan; 42(1):18-28. PubMed ID: 23080061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal ion-catalyzed cycloaddition vs hydride transfer reactions of NADH analogues with p-benzoquinones.
    Fukuzumi S; Fujii Y; Suenobu T
    J Am Chem Soc; 2001 Oct; 123(42):10191-9. PubMed ID: 11603968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of the ring size of TMC ligands in controlling C-H bond activation by metal-superoxo species.
    Monika ; Ansari A
    Dalton Trans; 2022 Apr; 51(15):5878-5889. PubMed ID: 35347335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stopped-flow kinetics of hydride transfer between nucleotides by recombinant domains of proton-translocating transhydrogenase.
    Venning JD; Bizouarn T; Cotton NP; Quirk PG; Jackson JB
    Eur J Biochem; 1998 Oct; 257(1):202-9. PubMed ID: 9799120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics of the hydride reduction of an NAD(+) analogue by isopropyl alcohol in aqueous and acetonitrile solutions: solvent effects, deuterium isotope effects, and mechanism.
    Lu Y; Qu F; Zhao Y; Small AM; Bradshaw J; Moore B
    J Org Chem; 2009 Sep; 74(17):6503-10. PubMed ID: 19670893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reactions of a chromium(III)-superoxo complex and nitric oxide that lead to the formation of chromium(IV)-oxo and chromium(III)-nitrito complexes.
    Yokoyama A; Cho KB; Karlin KD; Nam W
    J Am Chem Soc; 2013 Oct; 135(40):14900-3. PubMed ID: 24066924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.