These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities. Daguerre H; Solsona M; Cottet J; Gauthier M; Renaud P; Bolopion A Lab Chip; 2020 Oct; 20(20):3665-3689. PubMed ID: 32914827 [TBL] [Abstract][Full Text] [Related]
9. Deciphering impedance cytometry signals with neural networks. Caselli F; Reale R; De Ninno A; Spencer D; Morgan H; Bisegna P Lab Chip; 2022 May; 22(9):1714-1722. PubMed ID: 35353108 [TBL] [Abstract][Full Text] [Related]
10. A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry. Honrado C; McGrath JS; Reale R; Bisegna P; Swami NS; Caselli F Anal Bioanal Chem; 2020 Jun; 412(16):3835-3845. PubMed ID: 32189012 [TBL] [Abstract][Full Text] [Related]
11. Enhancing signals of microfluidic impedance cytometry through optimization of microelectrode array. Zhou C; Shen H; Feng H; Yan Z; Ji B; Yuan X; Zhang R; Chang H Electrophoresis; 2022 Nov; 43(21-22):2156-2164. PubMed ID: 35305273 [TBL] [Abstract][Full Text] [Related]
12. The up-to-date strategies for the isolation and manipulation of single cells. Zhang X; Wei X; Wei Y; Chen M; Wang J Talanta; 2020 Oct; 218():121147. PubMed ID: 32797903 [TBL] [Abstract][Full Text] [Related]
13. Inertial microfluidics for high-throughput cell analysis and detection: a review. Zhou Z; Chen Y; Zhu S; Liu L; Ni Z; Xiang N Analyst; 2021 Oct; 146(20):6064-6083. PubMed ID: 34490431 [TBL] [Abstract][Full Text] [Related]
14. Label-free multidimensional bacterial characterization with an ultrawide detectable concentration range by microfluidic impedance cytometry. Chen J; Zhong J; Lei H; Ai Y Lab Chip; 2023 Nov; 23(23):5029-5038. PubMed ID: 37909182 [TBL] [Abstract][Full Text] [Related]
15. Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes. Zhong J; Liang M; Ai Y Lab Chip; 2021 Aug; 21(15):2869-2880. PubMed ID: 34236057 [TBL] [Abstract][Full Text] [Related]
16. High-throughput and label-free multi-outlet cell counting using a single pair of impedance electrodes. Sobahi N; Han A Biosens Bioelectron; 2020 Oct; 166():112458. PubMed ID: 32777724 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic impedance-based flow cytometry. Cheung KC; Di Berardino M; Schade-Kampmann G; Hebeisen M; Pierzchalski A; Bocsi J; Mittag A; Tárnok A Cytometry A; 2010 Jul; 77(7):648-66. PubMed ID: 20583276 [TBL] [Abstract][Full Text] [Related]
18. Time-domain signal averaging to improve microparticles detection and enumeration accuracy in a microfluidic impedance cytometer. Ashley BK; Hassan U Biotechnol Bioeng; 2021 Nov; 118(11):4428-4440. PubMed ID: 34370302 [TBL] [Abstract][Full Text] [Related]
19. A Bayesian Approach for Coincidence Resolution in Microfluidic Impedance Cytometry. Caselli F; De Ninno A; Reale R; Businaro L; Bisegna P IEEE Trans Biomed Eng; 2021 Jan; 68(1):340-349. PubMed ID: 32746004 [TBL] [Abstract][Full Text] [Related]
20. Modified Red Blood Cells as Multimodal Standards for Benchmarking Single-Cell Cytometry and Separation Based on Electrical Physiology. Salahi A; Honrado C; Rane A; Caselli F; Swami NS Anal Chem; 2022 Feb; 94(6):2865-2872. PubMed ID: 35107262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]