These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33331387)

  • 41. Nucleophilic Arylation of N,O-Ketene Acetals with Triaryl Aluminum Reagents: Access to α-Aryl Amides through an Umpolung Process.
    Takeda N; Futaki E; Kobori Y; Ueda M; Miyata O
    Angew Chem Int Ed Engl; 2017 Dec; 56(51):16342-16346. PubMed ID: 29105232
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cross-Electrophile Couplings of Activated and Sterically Hindered Halides and Alcohol Derivatives.
    Liu J; Ye Y; Sessler JL; Gong H
    Acc Chem Res; 2020 Sep; 53(9):1833-1845. PubMed ID: 32840998
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of internal fluorinated alkenes via facile aryloxylation of substituted phenols with aryl trifluorovinyl ethers.
    Moody JD; VanDerveer D; Smith DW; Iacono ST
    Org Biomol Chem; 2011 Jul; 9(13):4842-9. PubMed ID: 21552580
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Palladium-catalyzed aryl-aryl bond formation through double C-H activation.
    You SL; Xia JB
    Top Curr Chem; 2010; 292():165-94. PubMed ID: 21500406
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Copper-catalyzed oxidative C-O bond formation of 2-acyl phenols and 1,3-dicarbonyl compounds with ethers: direct access to phenol esters and enol esters.
    Park J; Han SH; Sharma S; Han S; Shin Y; Mishra NK; Kwak JH; Lee CH; Lee J; Kim IS
    J Org Chem; 2014 May; 79(10):4735-42. PubMed ID: 24762192
    [TBL] [Abstract][Full Text] [Related]  

  • 46. From α-arylation of olefins to acylation with aldehydes: a journey in regiocontrol of the Heck reaction.
    Ruan J; Xiao J
    Acc Chem Res; 2011 Aug; 44(8):614-26. PubMed ID: 21612205
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DFT studies of the role of C-2-O-2 bond rotation in neighboring-group glycosylation reactions.
    Whitfield DM; Nukada T
    Carbohydr Res; 2007 Jul; 342(10):1291-304. PubMed ID: 17477909
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Efficient synthesis of multisubstituted aromatic compounds from phenol derivatives].
    Ikawa T
    Yakugaku Zasshi; 2014; 134(12):1309-17. PubMed ID: 25452240
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Potential effect of ultrasound on carbohydrates.
    Bera S; Mondal D; Martin JT; Singh M
    Carbohydr Res; 2015 Jun; 410():15-35. PubMed ID: 25954862
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intramolecular Aryl Migration of Diaryliodonium Salts: Access to ortho-Iodo Diaryl Ethers.
    Chen H; Han J; Wang L
    Angew Chem Int Ed Engl; 2018 Sep; 57(38):12313-12317. PubMed ID: 30137685
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Base-Mediated O-Arylation of Alcohols and Phenols by Triarylsulfonium Triflates.
    Ming XX; Tian ZY; Zhang CP
    Chem Asian J; 2019 Oct; 14(19):3370-3379. PubMed ID: 31464363
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nucleophilic ipso-Substitution of Aryl Methyl Ethers through Aryl C-OMe Bond Cleavage; Access to Functionalized Bisthiophenes.
    Mishra AK; Verma A; Biswas S
    J Org Chem; 2017 Apr; 82(7):3403-3410. PubMed ID: 28244740
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Seven decades of "advances".
    Horton D
    Adv Carbohydr Chem Biochem; 2013; 70():13-209. PubMed ID: 24295574
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diversity synthesis via C-H bond functionalization: concept-guided development of new C-arylation methods for imidazoles.
    Sezen B; Sames D
    J Am Chem Soc; 2003 Sep; 125(35):10580-5. PubMed ID: 12940740
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Catalytic C-H Arylation of Aliphatic Aldehydes Enabled by a Transient Ligand.
    Yang K; Li Q; Liu Y; Li G; Ge H
    J Am Chem Soc; 2016 Oct; 138(39):12775-12778. PubMed ID: 27652493
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The efficiency of the metal catalysts in the nucleophilic substitution of alcohols is dependent on the nucleophile and not on the electrophile.
    Biswas S; Samec JS
    Chem Asian J; 2013 May; 8(5):974-81. PubMed ID: 23471850
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New Mechanistic Insights on the Selectivity of Transition-Metal-Catalyzed Organic Reactions: The Role of Computational Chemistry.
    Zhang X; Chung LW; Wu YD
    Acc Chem Res; 2016 Jun; 49(6):1302-10. PubMed ID: 27268125
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Catalytic direct arylation with aryl chlorides, bromides, and iodides: intramolecular studies leading to new intermolecular reactions.
    Campeau LC; Parisien M; Jean A; Fagnou K
    J Am Chem Soc; 2006 Jan; 128(2):581-90. PubMed ID: 16402846
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct C-H α-Arylation of Enones with ArI(O
    Sousa E Silva FC; Van NT; Wengryniuk SE
    J Am Chem Soc; 2020 Jan; 142(1):64-69. PubMed ID: 31841623
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Unified Explanation for Chemoselectivity and Stereospecificity of Ni-Catalyzed Kumada and Cross-Electrophile Coupling Reactions of Benzylic Ethers: A Combined Computational and Experimental Study.
    Chen PP; Lucas EL; Greene MA; Zhang SQ; Tollefson EJ; Erickson LW; Taylor BLH; Jarvo ER; Hong X
    J Am Chem Soc; 2019 Apr; 141(14):5835-5855. PubMed ID: 30866626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.