These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 33332129)
1. Activating Bubble's Escape, Coalescence, and Departure under an Electric Field Effect. Yan R; Pham R; Chen CL Langmuir; 2020 Dec; 36(51):15558-15571. PubMed ID: 33332129 [TBL] [Abstract][Full Text] [Related]
2. Performance Enhancement of Electrocatalytic Hydrogen Evolution through Coalescence-Induced Bubble Dynamics. Bashkatov A; Park S; Demirkır Ç; Wood JA; Koper MTM; Lohse D; Krug D J Am Chem Soc; 2024 Apr; 146(14):10177-10186. PubMed ID: 38538570 [TBL] [Abstract][Full Text] [Related]
3. Coalescence of bubbles translating through a tube. Almatroushi E; Borhan A Ann N Y Acad Sci; 2006 Sep; 1077():508-26. PubMed ID: 17124143 [TBL] [Abstract][Full Text] [Related]
4. Modeling cavitation bubble dynamics in an autoinjector and its implications on drug molecules. Zhang Y; Dou Z; Veilleux JC; Shi GH; Collins DS; Vlachos PP; Dabiri S; Ardekani AM Int J Pharm; 2021 Oct; 608():121062. PubMed ID: 34506926 [TBL] [Abstract][Full Text] [Related]
5. How Coalescing Bubbles Depart from a Wall. Iwata R; Zhang L; Lu Z; Gong S; Du J; Wang EN Langmuir; 2022 Apr; 38(14):4371-4377. PubMed ID: 35349299 [TBL] [Abstract][Full Text] [Related]
6. 1/2 order subharmonic waves of two cavitation bubbles. Tao F; Zhao GY; Chen WZ; Tao D Ultrason Sonochem; 2024 Nov; 110():107022. PubMed ID: 39163692 [TBL] [Abstract][Full Text] [Related]
7. Experimental Research on the Influence of Different Curved Rigid Boundaries on Electric Spark Bubbles. Ma C; Shi D; Chen Y; Cui X; Wang M Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899977 [TBL] [Abstract][Full Text] [Related]
8. Influence of acoustic pressure and bubble sizes on the coalescence of two contacting bubbles in an acoustic field. Jiao J; He Y; Yasui K; Kentish SE; Ashokkumar M; Manasseh R; Lee J Ultrason Sonochem; 2015 Jan; 22():70-7. PubMed ID: 25043557 [TBL] [Abstract][Full Text] [Related]
10. Heat transfer and bubble detachment in subcooled pool boiling from a downward-facing microheater array in a nonuniform electric field. Liu Z; Herman C; Kim J Ann N Y Acad Sci; 2009 Apr; 1161():182-91. PubMed ID: 19426316 [TBL] [Abstract][Full Text] [Related]
11. Stability of aqueous films between bubbles. Part 1. The effect of speed on bubble coalescence in purified water and simple electrolyte solutions. Yaminsky VV; Ohnishi S; Vogler EA; Horn RG Langmuir; 2010 Jun; 26(11):8061-74. PubMed ID: 20146434 [TBL] [Abstract][Full Text] [Related]
12. Flow Boiling Heat Transfer Enhancement Using Tuned Geometrical Contact-Line Pinning. Salmean C; Qiu H ACS Appl Mater Interfaces; 2023 May; 15(19):23844-23859. PubMed ID: 37130321 [TBL] [Abstract][Full Text] [Related]
13. Interactions between gas-liquid mass transfer and bubble behaviours. Li X; Wang W; Zhang P; Li J; Chen G R Soc Open Sci; 2019 May; 6(5):190136. PubMed ID: 31218056 [TBL] [Abstract][Full Text] [Related]
14. Influence of the impact velocity and size of the film formed on bubble coalescence time at water surface. Zawala J; Malysa K Langmuir; 2011 Mar; 27(6):2250-7. PubMed ID: 21309589 [TBL] [Abstract][Full Text] [Related]
15. Theory and experiment on particle trapping and manipulation via optothermally generated bubbles. Zhao C; Xie Y; Mao Z; Zhao Y; Rufo J; Yang S; Guo F; Mai JD; Huang TJ Lab Chip; 2014 Jan; 14(2):384-91. PubMed ID: 24276624 [TBL] [Abstract][Full Text] [Related]
16. Micro air bubble manipulation by electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating of bubbles. Zhao Y; Cho SK Lab Chip; 2007 Feb; 7(2):273-80. PubMed ID: 17268631 [TBL] [Abstract][Full Text] [Related]
17. Hydrodynamic behavior of bubbles at gas-evolving electrode in ultrasonic field during water electrolysis. Cho KM; Deshmukh PR; Shin WG Ultrason Sonochem; 2021 Dec; 80():105796. PubMed ID: 34678597 [TBL] [Abstract][Full Text] [Related]
18. Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field. Xi X; Cegla F; Mettin R; Holsteyns F; Lippert A J Acoust Soc Am; 2014 Apr; 135(4):1731-41. PubMed ID: 25234973 [TBL] [Abstract][Full Text] [Related]
19. The Role of Contact Line (Pinning) Forces on Bubble Blockage in Microchannels. Mohammadi M; Sharp KV J Fluids Eng; 2015 Mar; 137(3):0312081-312087. PubMed ID: 25729115 [TBL] [Abstract][Full Text] [Related]
20. Coalescence and stability analysis of surface nanobubbles on the polystyrene/water interface. Li D; Jing D; Pan Y; Wang W; Zhao X Langmuir; 2014 Jun; 30(21):6079-88. PubMed ID: 24818697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]