BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33332243)

  • 21. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.
    Hamzezadeh-Nakhjavani S; Tavakoli O; Akhlaghi SP; Salehi Z; Esmailnejad-Ahranjani P; Arpanaei A
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18859-73. PubMed ID: 26206125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Visible Light-Driven Photocatalytic Water-Splitting Reaction of Titanate Nanotubes Sensitised with Ru(II) Bipyridyl Complex.
    Malizia M; Scott SA; Torrente-Murciano L; Boies AM; Aljohani TA; Baldovi HG
    Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial adhesion and inactivation on Ag decorated TiO
    Hajjaji A; Elabidi M; Trabelsi K; Assadi AA; Bessais B; Rtimi S
    Colloids Surf B Biointerfaces; 2018 Oct; 170():92-98. PubMed ID: 29894837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorptive separation and photocatalytic degradation of methylene blue dye on titanate nanotube powders prepared by hydrothermal process using metal Ti particles as a precursor.
    Hu K; Xiao X; Cao X; Hao R; Zuo X; Zhang X; Nan J
    J Hazard Mater; 2011 Aug; 192(2):514-20. PubMed ID: 21676544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of calcination time of a quadruple-element doped titania nanoparticles in the photodegradation of gaseous formaldehyde under blue light irradiation.
    Laciste MT; de Luna MDG; Tolosa NC; Lu MC
    Chemosphere; 2020 May; 246():125763. PubMed ID: 31918089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metal-doped carbon-supported/modified titanate nanotubes for perfluorooctane sulfonate degradation in water: Effects of preparation conditions, mechanisms, and parameter optimization.
    Zhu Y; Xu T; Zhao D
    Sci Total Environ; 2022 Dec; 853():158573. PubMed ID: 36075423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing photocatalytic degradation of methyl orange by crystallinity transformation of titanium dioxide: A kinetic study.
    Adnan F; Phattarapattamawong S
    Water Environ Res; 2019 Aug; 91(8):722-730. PubMed ID: 30849204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of calcination on structure and photocatalytic property of N-TiO
    Sun Q; Hu X; Zheng S; Zhang J; Sheng J
    Environ Pollut; 2019 Feb; 245():53-62. PubMed ID: 30414549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of Multi-Walled Carbon Nanotubes/TiO2 Composite and Its Photocatalytic Activity.
    Dong H; Qu C; Zhang T; Zhu L; Ma W
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2646-51. PubMed ID: 27455683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TiO2 nanotube arrays with visible light catalytic.
    Liu E; Bi X
    An Acad Bras Cienc; 2023; 95(2):e20201164. PubMed ID: 37585892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photocatalytic Oxidation of Propylene on Pd-Loaded Anatase TiO2 Nanotubes Under Visible Light Irradiation.
    Li C; Zong L; Li Q; Zhang J; Yang J; Jin Z
    Nanoscale Res Lett; 2016 Dec; 11(1):271. PubMed ID: 27229518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One stone two birds: novel carbon nanotube/Bi
    Zhang X; Shi D; Fan J
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23309-23320. PubMed ID: 28836094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced visible light photocatalytic activity of N, F-codoped TiO
    Xia SM; Zhang YQ; Zheng YF; Xu CS; Liu GM
    Environ Technol; 2019 Apr; 40(11):1418-1424. PubMed ID: 29323620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tungstate/titanate composite nanorod as an efficient visible light photo catalyst.
    Sajjad AK; Shamaila S; Zhang J
    J Hazard Mater; 2012 Oct; 235-236():307-15. PubMed ID: 22910452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photocatalytic degradation and kinetic modeling of azo dye using bimetallic photocatalysts: effect of synthesis and operational parameters.
    Riaz N; Hassan M; Siddique M; Mahmood Q; Farooq U; Sarwar R; Khan MS
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):2992-3006. PubMed ID: 31838680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption and photocatalytic scavenging of 2-chlorophenol using carbon nitride-titania nanotubes based nanocomposite: Experimental data, kinetics and mechanism.
    Barakat MA; Kumar R; Eniola JO
    Data Brief; 2021 Feb; 34():106664. PubMed ID: 33385029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of calcination temperature on the microstructure and photocatalytic activity of TiO2-based composite nanotubes prepared by an in situ template dissolution method.
    Fan J; Zhao L; Yu J; Liu G
    Nanoscale; 2012 Oct; 4(20):6597-603. PubMed ID: 22975869
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO₂ and titanate nanotubes.
    Liu W; Ni J; Yin X
    Water Res; 2014 Apr; 53():12-25. PubMed ID: 24486715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and Characterization of TiO
    Assadi AA; Karoui S; Trabelsi K; Hajjaji A; Elfalleh W; Ghorbal A; Maghzaoui M; Assadi AA
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208001
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on adsorption, reaction mechanisms and kinetics for photocatalytic degradation of CHD, a pharmaceutical waste.
    Sarkar S; Bhattacharjee C; Curcio S
    Ecotoxicol Environ Saf; 2015 Nov; 121():154-63. PubMed ID: 25956186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.