These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33332265)

  • 21. A bulk micromachined lead zinconate titanate cantilever energy harvester with inter-digital IrO(x) electrodes.
    Park J; Park JY
    J Nanosci Nanotechnol; 2013 Oct; 13(10):7191-3. PubMed ID: 24245226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical Study on Widening Bandwidth of Piezoelectric Vibration Energy Harvester with Nonlinear Characteristics.
    Qichang Z; Yang Y; Wei W
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Novel Bird-Shape Broadband Piezoelectric Energy Harvester for Low Frequency Vibrations.
    Yu H; Zhang X; Shan X; Hu L; Zhang X; Hou C; Xie T
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838122
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Level Vibration for Single-Frequency and Multi-Frequency Excitation in Macro-Composite Piezoelectric (MFC) Energy Harvesters, Nonlinearity, and Higher Harmonics.
    Khazaee M
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design Procedure and Experimental Verification of a Broadband Quad-Stable 2-DOF Vibration Energy Harvester.
    Zayed AAA; Assal SFM; Nakano K; Kaizuka T; El-Bab AMRF
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Direction Self-Tuning Two-Dimensional Piezoelectric Vibration Energy Harvester.
    Zhao H; Wei X; Zhong Y; Wang P
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Autonomous Resonance-Tuning Mechanism for Environmental Adaptive Energy Harvesting.
    Lee DG; Shin J; Kim HS; Hur S; Sun S; Jang JS; Chang S; Jung I; Nahm S; Kang H; Kang CY; Kim S; Baik JM; Yoo IR; Cho KH; Song HC
    Adv Sci (Weinh); 2023 Jan; 10(3):e2205179. PubMed ID: 36442861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wide Bandwidth Vibration Energy Harvester with Embedded Transverse Movable Mass.
    Jackson N; Rodriguez LA; Adhikari R
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450959
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Pendulum-like Low Frequency Electromagnetic Vibration Energy Harvester Based on Polymer Spring and Coils.
    Li Y; Wang X; Zhang S; Zhou C; Qiao D; Tao K
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Segmentation of a Vibro-Shock Cantilever-Type Piezoelectric Energy Harvester Operating in Higher Transverse Vibration Modes.
    Zizys D; Gaidys R; Dauksevicius R; Ostasevicius V; Daniulaitis V
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703623
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of an Impact-Based Frequency Up-Converted Piezoelectric Vibration Energy Harvester for Wearable Devices.
    Aceti P; Rosso M; Ardito R; Pienazza N; Nastro A; Baù M; Ferrari M; Rouvala M; Ferrari V; Corigliano A
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bi-Directional Piezoelectric Multi-Modal Energy Harvester Based on Saw-Tooth Cantilever Array.
    Čeponis A; Mažeika D; Kilikevičius A
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and Experimental Investigation of an Ultra-Low Frequency, Low-Intensity, and Multidirectional Piezoelectric Energy Harvester with Liquid as the Energy-Capture Medium.
    Li N; Yang F; Luo T; Qin L
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Multi-Mode Broadband Vibration Energy Harvester Composed of Symmetrically Distributed U-Shaped Cantilever Beams.
    Huang X; Zhang C; Dai K
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33669395
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center.
    Chen J; Liu X; Wang H; Wang S; Guan M
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Frequency Modulation Approach for High Power Density 100 Hz Piezoelectric Vibration Energy Harvester.
    Ju D; Wang L; Li C; Huang H; Liu H; Liu K; Wang Q; Han X; Zhao L; Maeda R
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow.
    Song R; Hou C; Yang C; Yang X; Guo Q; Shan X
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analytical Modeling and Simulation of an Electromagnetic Energy Harvester for Pulsating Fluid Flow in Pipeline.
    Bakhtiar S; Khan FU
    ScientificWorldJournal; 2019; 2019():5682517. PubMed ID: 31467496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multimodal MEMS vibration energy harvester with cascaded flexible and silicon beams for ultralow frequency response.
    Feng H; Bu L; Li Z; Xu S; Hu B; Xu M; Jiang S; Wang X
    Microsyst Nanoeng; 2023; 9():33. PubMed ID: 36969966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of a Cantilevered Piezoelectric Energy Harvester in Different Orientations for Rotational Motion.
    Su WJ; Lin JH; Li WC
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.