These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33332272)

  • 41. A Group-Based Image Inpainting Using Patch Refinement in MRF Framework.
    Ghorai M; Mandal S; Chanda B
    IEEE Trans Image Process; 2018 Feb; 27(2):556-567. PubMed ID: 29136609
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dual-Sampling Attention Pooling for Graph Neural Networks on 3D Mesh.
    Wen T; Zhuang J; Du Y; Yang L; Xu J
    Comput Methods Programs Biomed; 2021 Sep; 208():106250. PubMed ID: 34289439
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Similarity-based appearance-prior for fitting a subdivision mesh in gene expression images.
    Le YH; Kurkure U; Paragios N; Ju T; Carson JP; Kakadiaris IA
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):577-84. PubMed ID: 23285598
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A 3D global-to-local deformable mesh model based registration and anatomy-constrained segmentation method for image guided prostate radiotherapy.
    Zhou J; Kim S; Jabbour S; Goyal S; Haffty B; Chen T; Levinson L; Metaxas D; Yue NJ
    Med Phys; 2010 Mar; 37(3):1298-308. PubMed ID: 20384267
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A multichannel Markov random field framework for tumor segmentation with an application to classification of gene expression-based breast cancer recurrence risk.
    Ashraf AB; Gavenonis SC; Daye D; Mies C; Rosen MA; Kontos D
    IEEE Trans Med Imaging; 2013 Apr; 32(4):637-48. PubMed ID: 23008246
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A tree-structured Markov random field model for Bayesian image segmentation.
    D'Elia C; Poggi G; Scarpa G
    IEEE Trans Image Process; 2003; 12(10):1259-73. PubMed ID: 18237891
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interactive semiautomatic contour delineation using statistical conditional random fields framework.
    Hu YC; Grossberg MD; Wu A; Riaz N; Perez C; Mageras GS
    Med Phys; 2012 Jul; 39(7):4547-58. PubMed ID: 22830786
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Human Motion Segmentation via Robust Kernel Sparse Subspace Clustering.
    Xia G; Sun H; Feng L; Zhang G; Liu Y
    IEEE Trans Image Process; 2018 Jan.; 27(1):135-150. PubMed ID: 28809685
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A two-level generative model for cloth representation and shape from shading.
    Han F; Zhu SC
    IEEE Trans Pattern Anal Mach Intell; 2007 Jul; 29(7):1230-43. PubMed ID: 17496380
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A framework for quantification and visualization of segmentation accuracy and variability in 3D lateral ventricle ultrasound images of preterm neonates.
    Chen Y; Qiu W; Kishimoto J; Gao Y; Chan RH; de Ribaupierre S; Fenster A; Chiu B
    Med Phys; 2015 Nov; 42(11):6387-405. PubMed ID: 26520730
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An explicit shape-constrained MRF-based contour evolution method for 2-D medical image segmentation.
    Chittajallu DR; Paragios N; Kakadiaris IA
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):120-9. PubMed ID: 24403409
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Insertion of 3-D-primitives in mesh-based representations: towards compact models preserving the details.
    Lafarge F; Keriven R; Brédif M
    IEEE Trans Image Process; 2010 Jul; 19(7):1683-94. PubMed ID: 20236893
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans.
    da Silva GLF; Diniz PS; Ferreira JL; França JVF; Silva AC; de Paiva AC; de Cavalcanti EAA
    Med Biol Eng Comput; 2020 Sep; 58(9):1947-1964. PubMed ID: 32566988
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches.
    Zhou X
    Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A segmentation model using compound Markov random fields based on a boundary model.
    Wu J; Chung AC
    IEEE Trans Image Process; 2007 Jan; 16(1):241-52. PubMed ID: 17283782
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Incorporating prior shape knowledge via data-driven loss model to improve 3D liver segmentation in deep CNNs.
    Mohagheghi S; Foruzan AH
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):249-257. PubMed ID: 31686380
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fully automatic segmentation of the femur from 3D-CT images using primitive shape recognition and statistical shape models.
    Ben Younes L; Nakajima Y; Saito T
    Int J Comput Assist Radiol Surg; 2014 Mar; 9(2):189-96. PubMed ID: 24101434
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D Statistical Shape Models Incorporating Landmark-Wise Random Regression Forests for Omni-Directional Landmark Detection.
    Norajitra T; Maier-Hein KH
    IEEE Trans Med Imaging; 2017 Jan; 36(1):155-168. PubMed ID: 27541630
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
    Enguehard J; O'Halloran P; Gholipour A
    IEEE Access; 2019; 7():11093-11104. PubMed ID: 31588387
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.
    Saito A; Nawano S; Shimizu A
    Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.