These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 33332350)

  • 1. Site-specific targeting of a light activated dCas9-KillerRed fusion protein generates transient, localized regions of oxidative DNA damage.
    House NCM; Parasuram R; Layer JV; Price BD
    PLoS One; 2020; 15(12):e0237759. PubMed ID: 33332350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks.
    Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines.
    Wassef M; Luscan A; Battistella A; Le Corre S; Li H; Wallace MR; Vidaud M; Margueron R
    Methods; 2017 May; 121-122():45-54. PubMed ID: 28499832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.
    Sakuma T; Sakamoto T; Yamamoto T
    Methods Mol Biol; 2017; 1498():41-56. PubMed ID: 27709568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CAS9 is a genome mutator by directly disrupting DNA-PK dependent DNA repair pathway.
    Xu S; Kim J; Tang Q; Chen Q; Liu J; Xu Y; Fu X
    Protein Cell; 2020 May; 11(5):352-365. PubMed ID: 32170574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of Site-Specific Oxidative Damage at Telomeres by Killerred-Fused Shelretin Proteins.
    Tan R; Lan L
    Methods Mol Biol; 2017; 1587():139-146. PubMed ID: 28324506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QTL Mapping and CRISPR/Cas9 Editing to Identify a Drug Resistance Gene in Toxoplasma gondii.
    Shen B; Powell RH; Behnke MS
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28671645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering.
    Ui-Tei K; Maruyama S; Nakano Y
    Genome; 2017 Jun; 60(6):537-545. PubMed ID: 28177825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
    He X; Tan C; Wang F; Wang Y; Zhou R; Cui D; You W; Zhao H; Ren J; Feng B
    Nucleic Acids Res; 2016 May; 44(9):e85. PubMed ID: 26850641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide determination of on-target and off-target characteristics for RNA-guided DNA methylation by dCas9 methyltransferases.
    Lin L; Liu Y; Xu F; Huang J; Daugaard TF; Petersen TS; Hansen B; Ye L; Zhou Q; Fang F; Yang L; Li S; Fløe L; Jensen KT; Shrock E; Chen F; Yang H; Wang J; Liu X; Xu X; Bolund L; Nielsen AL; Luo Y
    Gigascience; 2018 Mar; 7(3):1-19. PubMed ID: 29635374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9.
    Yoder KE; Bundschuh R
    Sci Rep; 2016 Jul; 6():29530. PubMed ID: 27404981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus.
    Bothmer A; Phadke T; Barrera LA; Margulies CM; Lee CS; Buquicchio F; Moss S; Abdulkerim HS; Selleck W; Jayaram H; Myer VE; Cotta-Ramusino C
    Nat Commun; 2017 Jan; 8():13905. PubMed ID: 28067217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precision genome editing in the CRISPR era.
    Salsman J; Dellaire G
    Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assaying break and nick-induced homologous recombination in mammalian cells using the DR-GFP reporter and Cas9 nucleases.
    Vriend LE; Jasin M; Krawczyk PM
    Methods Enzymol; 2014; 546():175-91. PubMed ID: 25398341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mouse genome engineering via CRISPR-Cas9 for study of immune function.
    Pelletier S; Gingras S; Green DR
    Immunity; 2015 Jan; 42(1):18-27. PubMed ID: 25607456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Versatile Tool for the Quantification of CRISPR/Cas9-Induced Genome Editing Events in Human Hematopoietic Cell Lines and Hematopoietic Stem/Progenitor Cells.
    Jayavaradhan R; Pillis DM; Malik P
    J Mol Biol; 2019 Jan; 431(1):102-110. PubMed ID: 29751014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximal binding of dCas9 at a DNA double strand break stimulates homology-directed repair as a local inhibitor of classical non-homologous end joining.
    Feng YL; Liu SC; Chen RD; Sun XN; Xiao JJ; Xiang JF; Xie AY
    Nucleic Acids Res; 2023 Apr; 51(6):2740-2758. PubMed ID: 36864759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9 in Genome Editing and Beyond.
    Wang H; La Russa M; Qi LS
    Annu Rev Biochem; 2016 Jun; 85():227-64. PubMed ID: 27145843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Targeted and Tuneable DNA Damage Tool Using CRISPR/Cas9.
    Emmanouilidis I; Fili N; Cook AW; Hari-Gupta Y; Dos Santos Á; Wang L; Martin-Fernandez ML; Ellis PJI; Toseland CP
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33672015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing.
    Goubert D; Koncz M; Kiss A; Rots MG
    Methods Mol Biol; 2018; 1767():395-415. PubMed ID: 29524148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.