These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 33332392)
41. miR168 targets Argonaute1A mediated miRNAs regulation pathways in response to potassium deficiency stress in tomato. Liu X; Tan C; Cheng X; Zhao X; Li T; Jiang J BMC Plant Biol; 2020 Oct; 20(1):477. PubMed ID: 33076819 [TBL] [Abstract][Full Text] [Related]
42. Development of a simple and effective protocol for Agrobacterium tumefaciens mediated leaf disc transformation of commercial tomato cultivars. Van DT; Ferro N; Jacobsen HJ GM Crops; 2010; 1(5):312-21. PubMed ID: 21844688 [TBL] [Abstract][Full Text] [Related]
43. Epigenetic regulation of the expression of WRKY75 transcription factor in response to biotic and abiotic stresses in Solanaceae plants. López-Galiano MJ; González-Hernández AI; Crespo-Salvador O; Rausell C; Real MD; Escamilla M; Camañes G; García-Agustín P; González-Bosch C; García-Robles I Plant Cell Rep; 2018 Jan; 37(1):167-176. PubMed ID: 29079899 [TBL] [Abstract][Full Text] [Related]
44. Solanum lycopersicum cytokinin response factor (SlCRF) genes: characterization of CRF domain-containing ERF genes in tomato. Shi X; Gupta S; Rashotte AM J Exp Bot; 2012 Jan; 63(2):973-82. PubMed ID: 22068146 [TBL] [Abstract][Full Text] [Related]
45. Sly-miR159 regulates fruit morphology by modulating GA biosynthesis in tomato. Zhao P; Wang F; Deng Y; Zhong F; Tian P; Lin D; Deng J; Zhang Y; Huang T Plant Biotechnol J; 2022 May; 20(5):833-845. PubMed ID: 34882929 [TBL] [Abstract][Full Text] [Related]
46. MicroRNAs in tomato plants. Zuo J; Wang Y; Liu H; Ma Y; Ju Z; Zhai B; Fu D; Zhu Y; Luo Y; Zhu B Sci China Life Sci; 2011 Jul; 54(7):599-605. PubMed ID: 21748583 [TBL] [Abstract][Full Text] [Related]
47. The suppression of tomato defence response genes upon potato cyst nematode infection indicates a key regulatory role of miRNAs. Święcicka M; Skowron W; Cieszyński P; Dąbrowska-Bronk J; Matuszkiewicz M; Filipecki M; Koter MD Plant Physiol Biochem; 2017 Apr; 113():51-55. PubMed ID: 28182967 [TBL] [Abstract][Full Text] [Related]
48. Cultivar-biased regulation of HSFA7 and HSFB4a govern high-temperature tolerance in tomato. Rao S; Das JR; Balyan S; Verma R; Mathur S Planta; 2022 Jan; 255(2):31. PubMed ID: 34982240 [TBL] [Abstract][Full Text] [Related]
49. Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Choi JY; Seo YS; Kim SJ; Kim WT; Shin JS Plant Cell Rep; 2011 May; 30(5):867-77. PubMed ID: 21207033 [TBL] [Abstract][Full Text] [Related]
50. Identification of microRNAs and their targets in tomato infected with Cucumber mosaic virus based on deep sequencing. Feng J; Liu S; Wang M; Lang Q; Jin C Planta; 2014 Dec; 240(6):1335-52. PubMed ID: 25204630 [TBL] [Abstract][Full Text] [Related]
51. Screening of differentially expressed microRNAs and target genes in two potato varieties under nitrogen stress. Lu Y; Zhang J; Han Z; Han Z; Li S; Zhang J; Ma H; Han Y BMC Plant Biol; 2022 Oct; 22(1):478. PubMed ID: 36207676 [TBL] [Abstract][Full Text] [Related]
54. SlMIR164A regulates fruit ripening and quality by controlling SlNAM2 and SlNAM3 in tomato. Lin D; Zhu X; Qi B; Gao Z; Tian P; Li Z; Lin Z; Zhang Y; Huang T Plant Biotechnol J; 2022 Aug; 20(8):1456-1469. PubMed ID: 35403821 [TBL] [Abstract][Full Text] [Related]
55. Spatio-temporal expression of miRNAs in tomato tissues upon Cucumber mosaic virus and Tomato aspermy virus infections. Feng J; Liu X; Lai L; Chen J Acta Biochim Biophys Sin (Shanghai); 2011 Apr; 43(4):258-66. PubMed ID: 21335334 [TBL] [Abstract][Full Text] [Related]
56. Efficient and reproducible somatic embryogenesis and micropropagation in tomato via novel structures - Rhizoid Tubers. Saeed W; Naseem S; Gohar D; Ali Z PLoS One; 2019; 14(5):e0215929. PubMed ID: 31116740 [TBL] [Abstract][Full Text] [Related]
57. Optimisation of tomato Micro-tom regeneration and selection on glufosinate/Basta and dependency of gene silencing on transgene copy number. Khuong TT; Crété P; Robaglia C; Caffarri S Plant Cell Rep; 2013 Sep; 32(9):1441-54. PubMed ID: 23673466 [TBL] [Abstract][Full Text] [Related]
58. The tomato NAC transcription factor SlNAM2 is involved in flower-boundary morphogenesis. Hendelman A; Stav R; Zemach H; Arazi T J Exp Bot; 2013 Dec; 64(18):5497-507. PubMed ID: 24085581 [TBL] [Abstract][Full Text] [Related]
59. Optimization of Callus Induction and Shoot Regeneration from Tomato Cotyledon Explants. Yaroshko O; Pasternak T; Larriba E; Pérez-Pérez JM Plants (Basel); 2023 Aug; 12(16):. PubMed ID: 37631154 [TBL] [Abstract][Full Text] [Related]
60. Spatial transcriptomics reveals light-induced chlorenchyma cells involved in promoting shoot regeneration in tomato callus. Song X; Guo P; Xia K; Wang M; Liu Y; Chen L; Zhang J; Xu M; Liu N; Yue Z; Xu X; Gu Y; Li G; Liu M; Fang L; Deng XW; Li B Proc Natl Acad Sci U S A; 2023 Sep; 120(38):e2310163120. PubMed ID: 37703282 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]