These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33332517)

  • 1. The squeeze strengthening effect on the rheological and microstructured behaviors of magnetorheological fluids: a molecular dynamics study.
    Pei P; Peng Y
    Soft Matter; 2021 Jan; 17(1):184-200. PubMed ID: 33332517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new instrument for dynamic helical squeeze flow which superposes oscillatory shear and oscillatory squeeze flow.
    Kim JH; Ahn KH
    Rev Sci Instrum; 2012 Aug; 83(8):085105. PubMed ID: 22938330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Squeeze Behaviors of Magnetorheological Fluids under Different Compressive Speeds.
    Wang H; Bi C; Liu W; Zhou F
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Squeeze-Strengthening Effect of Silicone Oil-Based Magnetorheological Fluid with Nanometer Fe₃O₄ Addition in High-Torque Magnetorheological Brakes.
    Wang N; Liu X; Zhang X
    J Nanosci Nanotechnol; 2019 May; 19(5):2633-2639. PubMed ID: 30501760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comparative Analysis of Measured and Calculated Compressive Stresses of Magnetorheological Fluids under Unidirectional Compression and Constant Area.
    Bi C; Wang H; Liu W; Wu K
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheological Properties and Stabilization of Magnetorheological Fluids in a Water-in-Oil Emulsion.
    Park JH; Chin BD; Park OO
    J Colloid Interface Sci; 2001 Aug; 240(1):349-354. PubMed ID: 11446818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Searching for a Stable High-Performance Magnetorheological Suspension.
    Seo YP; Han S; Choi J; Takahara A; Choi HJ; Seo Y
    Adv Mater; 2018 Oct; 30(42):e1704769. PubMed ID: 30151957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory squeeze flow of suspensions of magnetic polymerized chains.
    Kuzhir P; López-López MT; Vertelov G; Pradille Ch; Bossis G
    J Phys Condens Matter; 2008 May; 20(20):204132. PubMed ID: 21694261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse magnetorheological fluids.
    Rodríguez-Arco L; López-López MT; Zubarev AY; Gdula K; Durán JD
    Soft Matter; 2014 Sep; 10(33):6256-65. PubMed ID: 25022363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect.
    Rabbani Y; Ashtiani M; Hashemabadi SH
    Soft Matter; 2015 Jun; 11(22):4453-60. PubMed ID: 25940850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient response of magnetorheological fluid on rapid change of magnetic field in shear mode.
    Kubík M; Válek J; Žáček J; Jeniš F; Borin D; Strecker Z; Mazůrek I
    Sci Rep; 2022 Jun; 12(1):10612. PubMed ID: 35739216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological properties of magnetorheological suspensions stabilized with nanocelluloses.
    Wang Y; Xie W; Wu D
    Carbohydr Polym; 2020 Mar; 231():115776. PubMed ID: 31888834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Synthesis of Organic Oils Blended Magnetorheological Fluids with the Field-Dependent Material Characterization.
    Jinaga R; Jagadeesha T; Kolekar S; Choi SB
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31744101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-Static Rheological Properties of Lithium-Based Magnetorheological Grease under Large Deformation.
    Wang H; Zhang G; Wang J
    Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31366140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Magnetic Field and Temperature on Rheological Behavior of Magnetorheological Gel.
    Sun M; Li X; Zhou Z; Deng R; Chen X; Wang J; Mao R
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of the optimal diameter and wall thickness of hollow Fe
    Pei L; Pang H; Chen K; Xuan S; Gong X
    Soft Matter; 2018 Jun; 14(24):5080-5091. PubMed ID: 29873389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experiments and Simulations on the Magnetorheology of Magnetic Fluid Based on Fe
    Pei L; Xuan S; Wu J; Bai L; Gong X
    Langmuir; 2019 Sep; 35(37):12158-12167. PubMed ID: 31448919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid molecular dynamics study on the non-Newtonian rheological behaviors of shear thickening fluid.
    Chen K; Wang Y; Xuan S; Gong X
    J Colloid Interface Sci; 2017 Jul; 497():378-384. PubMed ID: 28314143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-Dependent Rheological Properties of Magnetorheological Elastomer with Fountain-Like Particle Chain Alignment.
    Fakhree MAM; Nordin NA; Nazmi N; Mazlan SA; Aziz SAA; Ubaidillah U; Ahmad F; Choi SB
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magneto-induced rheological properties of magnetorheological gel under quasi-static shear with large deformation.
    Mao R; Wang H; Zhang G; Ye X; Wang J
    RSC Adv; 2020 Aug; 10(53):31691-31704. PubMed ID: 35518165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.