BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 33333091)

  • 1. Forcibly spun dragline silk fibers from web-building spider Trichonephila clavata ensure robustness irrespective of spinning speed and humidity.
    Yazawa K; Sasaki U
    Int J Biol Macromol; 2021 Jan; 168():550-557. PubMed ID: 33333091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antheraea pernyi silk fiber: a potential resource for artificially biospinning spider dragline silk.
    Zhang Y; Yang H; Shao H; Hu X
    J Biomed Biotechnol; 2010; 2010():683962. PubMed ID: 20454537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercontraction of dragline silk spun by lynx spiders (Oxyopidae).
    Pérez-Rigueiro J; Plaza GR; Torres FG; Hijar A; Hayashi C; Perea GB; Elices M; Guinea GV
    Int J Biol Macromol; 2010 Jun; 46(5):555-7. PubMed ID: 20359492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers.
    Gnesa E; Hsia Y; Yarger JL; Weber W; Lin-Cereghino J; Lin-Cereghino G; Tang S; Agari K; Vierra C
    Biomacromolecules; 2012 Feb; 13(2):304-12. PubMed ID: 22176138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous-based spinning of fibers from self-assembling structural proteins.
    Arcidiacono S; Welsh EA; Soares JW
    Methods Mol Biol; 2013; 996():43-59. PubMed ID: 23504417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.
    Marhabaie M; Leeper TC; Blackledge TA
    Biomacromolecules; 2014 Jan; 15(1):20-9. PubMed ID: 24313814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of different post-spin stretching conditions on the mechanical properties of synthetic spider silk fibers.
    Albertson AE; Teulé F; Weber W; Yarger JL; Lewis RV
    J Mech Behav Biomed Mater; 2014 Jan; 29():225-34. PubMed ID: 24113297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionalization and Reinforcement of Recombinant Spider Dragline Silk Fibers by Confined Nanoparticle Formation.
    Cheng J; Hu CF; Gan CY; Xia XX; Qian ZG
    ACS Biomater Sci Eng; 2022 Aug; 8(8):3299-3309. PubMed ID: 35820196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretching of supercontracted fibers: a link between spinning and the variability of spider silk.
    Guinea GV; Elices M; Pérez-Rigueiro J; Plaza GR
    J Exp Biol; 2005 Jan; 208(Pt 1):25-30. PubMed ID: 15601874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-related increase in inducible mechanical variability of major ampullate silk in a huntsman spider (Araneae: Sparassidae).
    Piorkowski D; Liao CP; Blackledge TA; Tso IM
    Naturwissenschaften; 2021 May; 108(3):22. PubMed ID: 33945014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of superior spider silk: from nanostructure to mechanical properties.
    Du N; Liu XY; Narayanan J; Li L; Lim ML; Li D
    Biophys J; 2006 Dec; 91(12):4528-35. PubMed ID: 16950851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells.
    Lazaris A; Arcidiacono S; Huang Y; Zhou JF; Duguay F; Chretien N; Welsh EA; Soares JW; Karatzas CN
    Science; 2002 Jan; 295(5554):472-6. PubMed ID: 11799236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombinant spider silk from aqueous solutions via a bio-inspired microfluidic chip.
    Peng Q; Zhang Y; Lu L; Shao H; Qin K; Hu X; Xia X
    Sci Rep; 2016 Nov; 6():36473. PubMed ID: 27819339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-toughness silk produced by a transgenic silkworm expressing spider (Araneus ventricosus) dragline silk protein.
    Kuwana Y; Sezutsu H; Nakajima K; Tamada Y; Kojima K
    PLoS One; 2014; 9(8):e105325. PubMed ID: 25162624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Wet-Spinning and Post-Spin Stretching Methods Amenable to Recombinant Spider Aciniform Silk.
    Weatherbee-Martin N; Xu L; Hupe A; Kreplak L; Fudge DS; Liu XQ; Rainey JK
    Biomacromolecules; 2016 Aug; 17(8):2737-46. PubMed ID: 27387592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tough synthetic spider-silk fibers obtained by titanium dioxide incorporation and formaldehyde cross-linking in a simple wet-spinning process.
    Zhu H; Sun Y; Yi T; Wang S; Mi J; Meng Q
    Biochimie; 2020 Aug; 175():77-84. PubMed ID: 32417459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyriform spidroin 1, a novel member of the silk gene family that anchors dragline silk fibers in attachment discs of the black widow spider, Latrodectus hesperus.
    Blasingame E; Tuton-Blasingame T; Larkin L; Falick AM; Zhao L; Fong J; Vaidyanathan V; Visperas A; Geurts P; Hu X; La Mattina C; Vierra C
    J Biol Chem; 2009 Oct; 284(42):29097-108. PubMed ID: 19666476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers.
    Teulé F; Addison B; Cooper AR; Ayon J; Henning RW; Benmore CJ; Holland GP; Yarger JL; Lewis RV
    Biopolymers; 2012 Jun; 97(6):418-31. PubMed ID: 22012252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The properties of native Trichonephila dragline silk and its biomedical applications.
    Bergmann F; Stadlmayr S; Millesi F; Zeitlinger M; Naghilou A; Radtke C
    Biomater Adv; 2022 Sep; 140():213089. PubMed ID: 36037764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Protein-Like Nanogel for Spinning Hierarchically Structured Artificial Spider Silk.
    He W; Qian D; Wang Y; Zhang G; Cheng Y; Hu X; Wen K; Wang M; Liu Z; Zhou X; Zhu M
    Adv Mater; 2022 Jul; 34(27):e2201843. PubMed ID: 35509216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.