These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33333351)

  • 1. A methodology employing retention modeling for achieving control space in liquid chromatography method development using quality by design approach.
    Jayaraman K; Rajendran AK; Kumar GS; Bhutani H
    J Chromatogr A; 2021 Jan; 1635():461658. PubMed ID: 33333351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A stepwise strategy employing automated screening and DryLab modeling for the development of robust methods for challenging high performance liquid chromatography separations: a case study.
    Jayaraman K; Alexander AJ; Hu Y; Tomasella FP
    Anal Chim Acta; 2011 Jun; 696(1-2):116-24. PubMed ID: 21621040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous optimization of mobile phase composition and pH using retention modeling and experimental design.
    Rácz N; Molnár I; Zöldhegyi A; Rieger HJ; Kormány R
    J Pharm Biomed Anal; 2018 Oct; 160():336-343. PubMed ID: 30114612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical quality by design-compliant retention modeling for exploring column interchangeabilities in separating ezetimibe and its related substances.
    Ferencz E; Zöldhegyi A; Kelemen ÉK; Obreja M; Urkon M; Sipos E; Tóth G; Molnár I; Szabó ZI
    J Chromatogr A; 2022 Oct; 1682():463494. PubMed ID: 36126559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer-assisted UHPLC method development and optimization for the determination of albendazole and its related substances.
    Ferencz E; Kelemen ÉK; Obreja M; Sipos E; Vida S; Urkon M; Szabó ZI
    J Pharm Biomed Anal; 2021 Sep; 203():114203. PubMed ID: 34153936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico robustness testing of a compendial HPLC purity method by using of a multidimensional design space build by chromatography modeling-Case study pramipexole.
    Schmidt AH; Stanic M; Molnár I
    J Pharm Biomed Anal; 2014 Mar; 91():97-107. PubMed ID: 24440825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time III. Improving the accuracy of computer simulation.
    Dolan JW; Snyder LR; Wolcott RG; Haber P; Baczek T; Kaliszan R; Sander LC
    J Chromatogr A; 1999 Oct; 857(1-2):41-68. PubMed ID: 10536825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer simulation for the convenient optimization of isocratic reversed-phase liquid chromatographic separations by varying temperature and mobile phase strength.
    Wolcott RG; Dolan JW; Snyder LR
    J Chromatogr A; 2000 Feb; 869(1-2):3-25. PubMed ID: 10720221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a fast high performance liquid chromatographic screening system for eight antidiabetic drugs by an improved methodology of in-silico robustness simulation.
    Mokhtar HI; Abdel-Salam RA; Haddad GM
    J Chromatogr A; 2015 Jun; 1399():32-44. PubMed ID: 25943830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-assisted UHPLC-MS method development and optimization for the determination of 24 antineoplastic drugs used in hospital pharmacy.
    Guichard N; Fekete S; Guillarme D; Bonnabry P; Fleury-Souverain S
    J Pharm Biomed Anal; 2019 Feb; 164():395-401. PubMed ID: 30439666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved quality-by-design compliant methodology for method development in reversed-phase liquid chromatography.
    Debrus B; Guillarme D; Rudaz S
    J Pharm Biomed Anal; 2013 Oct; 84():215-23. PubMed ID: 23850937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography].
    Shan YC; Zhang YK; Zhao RH
    Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention modeling and method development in hydrophilic interaction chromatography.
    Tyteca E; Périat A; Rudaz S; Desmet G; Guillarme D
    J Chromatogr A; 2014 Apr; 1337():116-27. PubMed ID: 24613041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quality by design: a systematic and rapid liquid chromatography and mass spectrometry method for eprosartan mesylate and its related impurities using a superficially porous particle column.
    Kalariya PD; Kumar Talluri MV; Gaitonde VD; Devrukhakar PS; Srinivas R
    J Sep Sci; 2014 Aug; 37(16):2160-71. PubMed ID: 24913516
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Haidar Ahmad IA; Makey DM; Wang H; Shchurik V; Singh AN; Stoll DR; Mangion I; Regalado EL
    Anal Chem; 2021 Aug; 93(33):11532-11539. PubMed ID: 34375071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renewal of an old European Pharmacopoeia method for Terazosin using modeling with mass spectrometric peak tracking.
    Kormány R; Molnár I; Fekete J
    J Pharm Biomed Anal; 2017 Feb; 135():8-15. PubMed ID: 27987393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients.
    Wiese S; Teutenberg T; Schmidt TC
    J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time I. Peak capacity limitations.
    Dolan JW; Snyder LR; Djordjevic NM; Hill DW; Waeghe TJ
    J Chromatogr A; 1999 Oct; 857(1-2):1-20. PubMed ID: 10536823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy.
    Horner AR; Wilson RE; Groskreutz SR; Murray BE; Weber SG
    J Chromatogr A; 2019 Mar; 1589():73-82. PubMed ID: 30626503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.