These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33333688)

  • 1. [The value of conventional magnetic resonance imaging based radiomic model in predicting the texture of pituitary macroadenoma].
    Chen JM; Wan Q; Zhu HY; Ge YQ; Wu LL; Zhai J; Ding ZM
    Zhonghua Yi Xue Za Zhi; 2020 Dec; 100(45):3626-3631. PubMed ID: 33333688
    [No Abstract]   [Full Text] [Related]  

  • 2. [Prediction of platinum-based chemotherapy sensitivity for epithelial ovarian cancer by multi-sequence MRI-based radiomic nomogram].
    Mao MM; Li HM; Shi J; Qiu QS; Feng F
    Zhonghua Yi Xue Za Zhi; 2022 Jan; 102(3):201-208. PubMed ID: 35042289
    [No Abstract]   [Full Text] [Related]  

  • 3. Application of BOLD
    Deng Y; Pan L; Xing W; Zhou Z; Chen J
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2021 Sept 28; 46(9):1010-1017. PubMed ID: 34707012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of magnetic resonance 3D-SPACE sequence combined image fusion technique in preoperative evaluation of pituitary macroadenoma.
    Nie J; Meng L; Li Z; Zhou G
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2020 Aug; 45(8):980-987. PubMed ID: 33053542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application Value of Magnetic Resonance Radiomics and Clinical Nomograms in Evaluating the Sensitivity of Neoadjuvant Chemotherapy for Nasopharyngeal Carcinoma.
    Hu C; Zheng D; Cao X; Pang P; Fang Y; Lu T; Chen Y
    Front Oncol; 2021; 11():740776. PubMed ID: 34790570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Texture Analysis of High b-Value Diffusion-Weighted Imaging for Evaluating Consistency of Pituitary Macroadenomas.
    Su CQ; Zhang X; Pan T; Chen XT; Chen W; Duan SF; Ji J; Hu WX; Lu SS; Hong XN
    J Magn Reson Imaging; 2020 May; 51(5):1507-1513. PubMed ID: 31769565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiomic Features on Multiparametric MRI for Preoperative Evaluation of Pituitary Macroadenomas Consistency: Preliminary Findings.
    Wan T; Wu C; Meng M; Liu T; Li C; Ma J; Qin Z
    J Magn Reson Imaging; 2022 May; 55(5):1491-1503. PubMed ID: 34549842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI.
    Cuocolo R; Ugga L; Solari D; Corvino S; D'Amico A; Russo D; Cappabianca P; Cavallo LM; Elefante A
    Neuroradiology; 2020 Dec; 62(12):1649-1656. PubMed ID: 32705290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI Texture-Based Models for Predicting Mitotic Index and Risk Classification of Gastrointestinal Stromal Tumors.
    Yang L; Zheng T; Dong Y; Wang Z; Liu D; Du J; Wu S; Shi Q; Liu L
    J Magn Reson Imaging; 2021 Apr; 53(4):1054-1065. PubMed ID: 33037745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential Diagnosis of Solitary Fibrous Tumor/Hemangiopericytoma and Angiomatous Meningioma Using Three-Dimensional Magnetic Resonance Imaging Texture Feature Model.
    Dong J; Yu M; Miao Y; Shen H; Sui Y; Liu Y; Han L; Li X; Lin M; Guo Y; Xie L
    Biomed Res Int; 2020; 2020():5042356. PubMed ID: 33344637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI.
    Kocak B; Durmaz ES; Kadioglu P; Polat Korkmaz O; Comunoglu N; Tanriover N; Kocer N; Islak C; Kizilkilic O
    Eur Radiol; 2019 Jun; 29(6):2731-2739. PubMed ID: 30506213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiparametric MRI Radiomic Model for Preoperative Predicting WHO/ISUP Nuclear Grade of Clear Cell Renal Cell Carcinoma.
    Li Q; Liu YJ; Dong D; Bai X; Huang QB; Guo AT; Ye HY; Tian J; Wang HY
    J Magn Reson Imaging; 2020 Nov; 52(5):1557-1566. PubMed ID: 32462799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape and texture analyses based on conventional MRI for the preoperative prediction of the aggressiveness of pituitary adenomas.
    Wang X; Dai Y; Lin H; Cheng J; Zhang Y; Cao M; Zhou Y
    Eur Radiol; 2023 May; 33(5):3312-3321. PubMed ID: 36738323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Automatic identification algorithm of meniscus tear based on radiomics of knee MRI].
    Li Y; Lai Q; Huang J; Hu W; Wang Y; Fang K
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 Nov; 36(11):1395-1399. PubMed ID: 36382458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Lymph Node Metastasis in Advanced Gastric Cancer Using Magnetic Resonance Imaging-Based Radiomics.
    Chen W; Wang S; Dong D; Gao X; Zhou K; Li J; Lv B; Li H; Wu X; Fang M; Tian J; Xu M
    Front Oncol; 2019; 9():1265. PubMed ID: 31824847
    [No Abstract]   [Full Text] [Related]  

  • 16. Value of MRI Radiomics Based on Enhanced T1WI Images in Prediction of Meningiomas Grade.
    Chu H; Lin X; He J; Pang P; Fan B; Lei P; Guo D; Ye C
    Acad Radiol; 2021 May; 28(5):687-693. PubMed ID: 32418785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Enhanced T1WI of MRI Radiomics in Glioma Grading.
    Zhou H; Xu R; Mei H; Zhang L; Yu Q; Liu R; Fan B
    Int J Clin Pract; 2022; 2022():3252574. PubMed ID: 35685548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of an MRI-based radiomic signature for the preoperative prediction of treatment response in patients with invasive functional pituitary adenoma.
    Fan Y; Liu Z; Hou B; Li L; Liu X; Liu Z; Wang R; Lin Y; Feng F; Tian J; Feng M
    Eur J Radiol; 2019 Dec; 121():108647. PubMed ID: 31561943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomic Model for Discrimination of Pathological Subtypes of Craniopharyngioma.
    Huang ZS; Xiao X; Li XD; Mo HZ; He WL; Deng YH; Lu LJ; Wu YK; Liu H
    J Magn Reson Imaging; 2021 Nov; 54(5):1541-1550. PubMed ID: 34085336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma.
    Wang G; He L; Yuan C; Huang Y; Liu Z; Liang C
    Eur J Radiol; 2018 Jan; 98():100-106. PubMed ID: 29279146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.