These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33333882)

  • 1. Path Following Control for Underactuated Airships with Magnitude and Rate Saturation.
    Gou H; Guo X; Lou W; Ou J; Yuan J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33333882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Neuro-Optimal Control of Underactuated Snake Robots With Experience Replay.
    Cao Z; Xiao Q; Huang R; Zhou M
    IEEE Trans Neural Netw Learn Syst; 2018 Jan; 29(1):208-217. PubMed ID: 29300697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved adaptive integral line-of-sight guidance law and adaptive fuzzy path following control for underactuated MSV.
    Nie J; Lin X
    ISA Trans; 2019 Nov; 94():151-163. PubMed ID: 31053360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constrained control using novel nonlinear mapping for underactuated unmanned surface vehicles with unknown sideslip angle.
    Tong H; Sun M; Luan T; Xu D
    ISA Trans; 2023 Oct; 141():261-275. PubMed ID: 37451922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive bounded neural network control for coordinated path-following of networked underactuated autonomous surface vehicles under time-varying state-dependent cyber-attack.
    Gu N; Wang D; Peng Z; Liu L
    ISA Trans; 2020 Sep; 104():212-221. PubMed ID: 30832988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing Deep Reinforcement Learning Algorithms' Ability to Safely Navigate Challenging Waters.
    Larsen TN; Teigen HØ; Laache T; Varagnolo D; Rasheed A
    Front Robot AI; 2021; 8():738113. PubMed ID: 34589522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Underactuated USV path following mechanism based on the cascade method.
    Lin M; Zhang Z; Pang Y; Lin H; Ji Q
    Sci Rep; 2022 Jan; 12(1):1461. PubMed ID: 35087164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical approximate policy iteration with binary-tree state space decomposition.
    Xu X; Liu C; Yang SX; Hu D
    IEEE Trans Neural Netw; 2011 Dec; 22(12):1863-77. PubMed ID: 21990333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Improved Distributed Sampling PPO Algorithm Based on Beta Policy for Continuous Global Path Planning Scheme.
    Xiao Q; Jiang L; Wang M; Zhang X
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kernel-based least squares policy iteration for reinforcement learning.
    Xu X; Hu D; Lu X
    IEEE Trans Neural Netw; 2007 Jul; 18(4):973-92. PubMed ID: 17668655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heading and velocity guidance based path following of autonomous surface vehicle with uncertainty attenuation and asymmetric saturated constraints.
    Yu Y; Guo C; Li T; Shen H
    ISA Trans; 2023 Jul; 138():88-105. PubMed ID: 36803781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Underactuated AUV Nonlinear Finite-Time Tracking Control Based on Command Filter and Disturbance Observer.
    Xu H; Zhang GC; Cao J; Pang S; Sun YS
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31731789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel DVS guidance principle and robust adaptive path-following control for underactuated ships using low frequency gain-learning.
    Zhang G; Zhang X
    ISA Trans; 2015 May; 56():75-85. PubMed ID: 25579375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordinated path following of multiple underacutated marine surface vehicles along one curve.
    Liu L; Wang D; Peng Z
    ISA Trans; 2016 Sep; 64():258-268. PubMed ID: 27198459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive fuzzy tracking control for underactuated surface vessels with unmodeled dynamics and input saturation.
    Deng Y; Zhang X; Im N; Zhang G; Zhang Q
    ISA Trans; 2020 Aug; 103():52-62. PubMed ID: 32414558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite time PAILOS based path following control of underactuated marine surface vessel with input saturation.
    Zhu H; Yu H; Guo C
    ISA Trans; 2023 Apr; 135():66-77. PubMed ID: 36229240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite-time path following scheme of unmanned surface vessels with an optimization strategy.
    Song S; Liu Z; Yuan S; Wang Z; Wang T
    ISA Trans; 2024 Mar; 146():61-74. PubMed ID: 38309974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Line-of-sight-based global finite-time stable path following control of unmanned surface vehicles with actuator saturation.
    Li M; Guo C; Yu H; Yuan Y
    ISA Trans; 2022 Jun; 125():306-317. PubMed ID: 34275611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning-Based Discontinuous Path Following Control for a Biomimetic Underwater Vehicle.
    Wang Y; Chu H; Ma R; Bai X; Cheng L; Wang S; Tan M
    Research (Wash D C); 2024; 7():0299. PubMed ID: 38292442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Path Following Based on Waypoints and Real-Time Obstacle Avoidance Control of an Autonomous Underwater Vehicle.
    Yao X; Wang X; Wang F; Zhang L
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32024015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.