These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33333885)

  • 1. Improving the Detection Ability of Inductive Micro-Sensor for Non-Ferromagnetic Wear Debris.
    Wang M; Shi H; Zhang H; Huo D; Xie Y; Su J
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33333885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on the Influence of Coil LC Parallel Resonance on Detection Effect of Inductive Wear Debris Sensor.
    Huang H; He S; Xie X; Feng W; Zhen H
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inductive Magnetic Nanoparticle Sensor based on Microfluidic Chip Oil Detection Technology.
    Bai C; Zhang H; Zeng L; Zhao X; Ma L
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32050692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Impedance Sensor for Distinguishing Multi-Contaminants in Hydraulic Oil of Offshore Machinery.
    Shi H; Huo D; Zhang H; Li W; Sun Y; Li G; Chen H
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Impedance Micro-Sensor for Metal Debris Monitoring of Hydraulic Oil.
    Zhang H; Shi H; Li W; Ma L; Zhao X; Xu Z; Wang C; Xie Y; Zhang Y
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33546510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Method for Detecting Ferromagnetic Wear Debris with High Flow Velocity.
    Wang F; Liu Z; Ren X; Wu S; Meng M; Wang Y; Pan X
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on High Sensitivity Oil Debris Detection Sensor Using High Magnetic Permeability Material and Coil Mutual Inductance.
    Wang C; Bai C; Yang Z; Zhang H; Li W; Wang X; Zheng Y; Ilerioluwa L; Sun Y
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Sensitivity of a Micro Inductive Sensor for Wear Debris Detection with Magnetic Powder Surrounded.
    Liu L; Chen L; Wang S; Yin Y; Liu D; Wu S; Liu Z; Pan X
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31266180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel On-Chip Impedance Sensor for the Detection of Particle Contamination in Hydraulic Oil.
    Zhang H; Zeng L; Teng H; Zhang X
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 30400440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Research of Inductive Oil Pollutant Detection Sensor Based on High Gradient Magnetic Field Structure.
    Li W; Bai C; Wang C; Zhang H; Ilerioluwa L; Wang X; Yu S; Li G
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34070828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of Non-Ferrous Wear Debris in Hydraulic Oil by Detecting the Equivalent Resistance of Inductive Sensors.
    Zeng L; Zhang H; Wang Q; Zhang X
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Investigation of Frequency Characteristics of a Novel Inductive Debris Sensor.
    Wu X; Liu H; Qian Z; Qian Z; Liu D; Li K; Wang G
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation and Optimization Design of Inductive Wear Particle Sensor.
    Fan B; Wang L; Liu Y; Zhang P; Feng S
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive Improvement of the Sensitivity and Detectability of a Large-Aperture Electromagnetic Wear Particle Detector.
    Jia R; Ma B; Zheng C; Ba X; Wang L; Du Q; Wang K
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31323846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Permanent Magnet Ferromagnetic Wear Debris Sensor Based on Axisymmetric High-Gradient Magnetic Field.
    Fan B; Liu Y; Zhang P; Wang L; Zhang C; Wang J
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Parameter Research of Time-Harmonic Magnetic Field Sensor Based on PDMS in Microfluidic Technology.
    Bai C; Zhang H; Wang C; Ilerioluwa Joseph L; Wang Q; Xie Y; Li G
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32899715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Inductive Debris Sensor Based on Dual-Excitation Coils and Dual-Sensing Coils for Online Debris Monitoring.
    Wu X; Zhang Y; Li N; Qian Z; Liu D; Qian Z; Zhang C
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-Three-Coil Sensor with Dual Excitation Signals Use Asymmetric Magnetic Fields to Distinguish between Non-Ferrous Metals.
    Hong J; Xie Y; Zhang S; Shi H; Liu Y; Zhang H; Sun Y
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multichannel Inductive Sensor Based on Phase Division Multiplexing for Wear Debris Detection.
    Wu S; Liu Z; Yuan H; Yu K; Gao Y; Liu L; Pan X
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 31013939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on Coil Impedance of Self-Inductive Displacement Sensor Considering Core Eddy Current.
    Ren Z; Li H; Yu W
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.