These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 33333938)
41. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Etesami H; Maheshwari DK Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608 [TBL] [Abstract][Full Text] [Related]
42. Silicon nutrition lowers cadmium content of wheat cultivars by regulating transpiration rate and activity of antioxidant enzymes. Naeem A; Saifullah ; Zia-Ur-Rehman M; Akhtar T; Zia MH; Aslam M Environ Pollut; 2018 Nov; 242(Pt A):126-135. PubMed ID: 29966836 [TBL] [Abstract][Full Text] [Related]
43. Arsenic-silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Khan E; Gupta M Sci Rep; 2018 Jul; 8(1):10301. PubMed ID: 29985462 [TBL] [Abstract][Full Text] [Related]
44. The Role of Soil Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions. Jacoby R; Peukert M; Succurro A; Koprivova A; Kopriva S Front Plant Sci; 2017; 8():1617. PubMed ID: 28974956 [TBL] [Abstract][Full Text] [Related]
45. The role of silicon in plant biology: a paradigm shift in research approach. Frew A; Weston LA; Reynolds OL; Gurr GM Ann Bot; 2018 Jun; 121(7):1265-1273. PubMed ID: 29438453 [TBL] [Abstract][Full Text] [Related]
46. Silicon improves photosynthesis and strengthens enzyme activities in the C Kang J; Zhao W; Zhu X J Plant Physiol; 2016 Jul; 199():76-86. PubMed ID: 27302008 [TBL] [Abstract][Full Text] [Related]
47. Involvement of Small RNAs in Phosphorus and Sulfur Sensing, Signaling and Stress: Current Update. Kumar S; Verma S; Trivedi PK Front Plant Sci; 2017; 8():285. PubMed ID: 28344582 [TBL] [Abstract][Full Text] [Related]
48. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Islam F; Yasmeen T; Ali Q; Ali S; Arif MS; Hussain S; Rizvi H Ecotoxicol Environ Saf; 2014 Jun; 104():285-93. PubMed ID: 24726941 [TBL] [Abstract][Full Text] [Related]
49. The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ali S; Farooq MA; Yasmeen T; Hussain S; Arif MS; Abbas F; Bharwana SA; Zhang G Ecotoxicol Environ Saf; 2013 Mar; 89():66-72. PubMed ID: 23260243 [TBL] [Abstract][Full Text] [Related]
50. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Anwaar SA; Ali S; Ali S; Ishaque W; Farid M; Farooq MA; Najeeb U; Abbas F; Sharif M Environ Sci Pollut Res Int; 2015 Mar; 22(5):3441-50. PubMed ID: 25516248 [TBL] [Abstract][Full Text] [Related]
51. Getting to the Root of Plant Mineral Nutrition: Combinatorial Nutrient Stresses Reveal Emergent Properties. Bouain N; Krouk G; Lacombe B; Rouached H Trends Plant Sci; 2019 Jun; 24(6):542-552. PubMed ID: 31006547 [TBL] [Abstract][Full Text] [Related]
52. Effect of phytoliths for mitigating water stress in durum wheat. Meunier JD; Barboni D; Anwar-Ul-Haq M; Levard C; Chaurand P; Vidal V; Grauby O; Huc R; Laffont-Schwob I; Rabier J; Keller C New Phytol; 2017 Jul; 215(1):229-239. PubMed ID: 28394079 [TBL] [Abstract][Full Text] [Related]
53. Silicon nutrition alleviates the negative impacts of arsenic on the photosynthetic apparatus of rice leaves: an analysis of the key limitations of photosynthesis. Sanglard LM; Martins SC; Detmann KC; Silva PE; Lavinsky AO; Silva MM; Detmann E; Araújo WL; DaMatta FM Physiol Plant; 2014 Oct; 152(2):355-66. PubMed ID: 24588812 [TBL] [Abstract][Full Text] [Related]
54. Silicon attenuates sodium toxicity by improving nutritional efficiency in sorghum and sunflower plants. Calero Hurtado A; Aparecida Chiconato D; de Mello Prado R; da Silveira Sousa Junior G; Felisberto G Plant Physiol Biochem; 2019 Sep; 142():224-233. PubMed ID: 31319370 [TBL] [Abstract][Full Text] [Related]
55. Lsi2: A black box in plant silicon transport. Coskun D; Deshmukh R; Shivaraj SM; Isenring P; Bélanger RR Plant Soil; 2021; 466(1-2):1-20. PubMed ID: 34720209 [TBL] [Abstract][Full Text] [Related]
56. Role of Silicon on Plant-Pathogen Interactions. Wang M; Gao L; Dong S; Sun Y; Shen Q; Guo S Front Plant Sci; 2017; 8():701. PubMed ID: 28529517 [TBL] [Abstract][Full Text] [Related]
57. Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. Mostofa MG; Li W; Nguyen KH; Fujita M; Tran LP Plant Cell Environ; 2018 Oct; 41(10):2227-2243. PubMed ID: 29869792 [TBL] [Abstract][Full Text] [Related]
58. Silicon improves salt tolerance of Glycyrrhiza uralensis Fisch. by ameliorating osmotic and oxidative stresses and improving phytohormonal balance. Zhang X; Zhang W; Lang D; Cui J; Li Y Environ Sci Pollut Res Int; 2018 Sep; 25(26):25916-25932. PubMed ID: 29961225 [TBL] [Abstract][Full Text] [Related]
59. Silicon Influences Soil Availability and Accumulation of Mineral Nutrients in Various Plant Species. Greger M; Landberg T; Vaculík M Plants (Basel); 2018 May; 7(2):. PubMed ID: 29783754 [TBL] [Abstract][Full Text] [Related]
60. Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth parameters, cellular antioxidants and stress modulators under arsenic stress. Pandey C; Khan E; Panthri M; Tripathi RD; Gupta M Plant Physiol Biochem; 2016 Jul; 104():216-25. PubMed ID: 27038600 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]